K29
- 103
- 0
Homework Statement
Show that the wave equation u_{tt}-\alpha^{2}u_{xx}=0 can be reduced to the form \phi_{\xi \eta}=0 by the change of variables
\xi=x-\alpha t
\eta=x+\alpha t
The Attempt at a Solution
\frac{\partial u}{\partial t}=\frac{\partial \xi}{\partial t}\frac{\partial \phi}{\partial \xi}+\frac{\partial \eta}{\partial t}\frac{\partial \phi}{\partial \eta} (chain rule)
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial t}(\frac{\partial \xi}{\partial t}\frac{\partial \phi}{\partial \xi} + \frac{\partial \eta}{\partial t} \frac{\partial \phi}{\partial \eta})
After some use of chain rule and product rule I get:
\frac{\partial^{2} u}{\partial t^{2}}= \frac{\partial^{2}\xi}{\partial t^{2}}\frac{\partial\phi}{\partial\xi} + \left(\frac{\partial \xi}{\partial t}\right)^{2} \frac{\partial^{2}\phi}{\partial \xi^{2}} + \frac{\partial^{2}\eta}{\partial t^{2}}\frac{\partial\phi}{\partial\eta} + \left(\frac{\partial \eta}{\partial t}\right)^{2} \frac{\partial^{2}\phi}{\partial \eta^{2}} (1)
Similarly
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2}\xi}{\partial x^{2}}\frac{\partial\phi}{\partial\xi} + \left(\frac{\partial \xi}{\partial x}\right)^{2}\frac{\partial^{2}\phi}{\partial \xi^{2}}+\frac{\partial^{2}\eta}{\partial x^{2}}\frac{\partial\phi}{\partial\eta} + \left(\frac{\partial \eta}{\partial x}\right)^{2}\frac{\partial^{2}\phi}{\partial \eta^{2}} (2)
Making the substitutions:
\frac{\partial \xi}{\partial t}=-\alpha, \frac{\partial^{2}\xi}{\partial t^{2}}=0
\frac{\partial \xi}{\partial x}=1, \frac{\partial^{2}\xi}{\partial x^{2}}=0
and
\frac{\partial \eta}{\partial t}=\alpha, \frac{\partial^{2}\xi}{\partial t^{2}}=0
\frac{\partial \eta}{\partial x}=1, \frac{\partial^{2}\xi}{\partial x^{2}}=0
Substituting these into (1) and (2) and substituting (1) and (2) into the original wave equation we get:
\alpha^{2}\frac{\partial^{2}\phi}{\partial \xi^{2}}+\alpha^{2}\frac{\partial^{2} \phi}{\partial \eta^{2}}-\alpha^{2}\left(\frac{\partial^{2}\phi}{\partial \xi^{2}}+\frac{\partial^{2}\phi}{\partial\eta^{2}}\right)=0
0=0
Has something gone wrong here? Please help. Thanks