Relating the entropy of an ideal gas with partial derivatives

Mayan Fung
Messages
131
Reaction score
14
Homework Statement
For an ideal gas, use ##dE=TdS-PdV+\mu dN## to prove
1. ##V(\frac{\partial P}{\partial T})_{\mu} = S##
2. ##V(\frac{\partial P}{\partial \mu})_T = N##
Relevant Equations
##dE=TdS-PdV+\mu dN##
It looks very easy at first glance. However, the variable S is a variable in the given expression. I have no clue to relate the partial derivatives to entropy and the number of particles.
 
Physics news on Phys.org
Using the extensible properties of the system as variables, we know that ##E (x \lambda) = \lambda E(X)## (Homogeneous function of degree a=1), so that we can say

##x * \nabla f = a f## (Euler's homogeneous theorem), where ##x = (x_{1},x_{2},...,x_{n})## is the vector with the variables.

So that
$$S( \partial E/ \partial S ) + V ( \partial E/ \partial V)+ N (\partial E/ \partial N )= a * E$$
$$ ST - PV + N \mu = E$$

The rest i think you can go on, eventually you will get the Gibbs Duhem equation
 
  • Like
Likes Mayan Fung and etotheipi
Just to add to what @LCSphysicist wrote, first try to re-write each term on the RHS according to ##x\mathrm{d}y = \mathrm{d}(xy) - y\mathrm{d}x##.
 
Thanks! This makes me recall the fact that ##G=\mu N## and ##G=U-TS+\mu N##
 
Mayan Fung said:
Thanks! This makes me recall the fact that ##G=\mu N## and ##G=U-TS+\mu N##
Careful, it's ##G := U -TS + pV = \mu N##
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top