Relative intensities of fine-structure components in an alkali

hicetnunc
Messages
13
Reaction score
5
Homework Statement
An emission line in the spectrum of an alkali has three fine-structure components corresponding to the transitions ##^2\text{P}_{3/2} - ^2\text{D}_{3/2}##, ##^2\text{P}_{3/2} - ^2\text{D}_{5/2}## and ##^2\text{P}_{1/2} - ^2\text{D}_{3/2}##. These components have intensities ##a##, ##b## and ##c##, respectively, that are in the ratio ##1:9:5##. Show that these satisfy the rule that the sum of the intensities of the transitions to, or from, a given level is proportional to its statistical weight (##2J+1##).
Relevant Equations
None.
Hi. I'm really stuck with this problem and would appreciate some help.

transitions.png


For example, if i take the total intensity from the ##^2\text{P}_{3/2}## level, i get ##a+b##. Since ##b## is 9 times larger than ##a##, i get that the total intensity is ##10a##. This should then be proportional to the statistical weight ##2J+1=4##, so ##10a = 4q##, where ##q## is a proportionality constant. Then ##q=2.5a##. But if I then consider the ##^2\text{D}_{3/2}## level, I get that its total intensity is ##a+c=6a## and has statistical weight 4. Then the proportionality constant would be ##q=\frac{6a}{4}=1.5a##. This doesn't seem right since I get different proportionality constants.

How should I handle this problem?
 
Physics news on Phys.org
You can only compare the P levels with each other, or the D levels with each other, not P with D. This works if you consider that for the P levels, (a+b):c =10:5 = 4:2, while for the D levels b:(a+c) = 9:6 = 6:4. But the total number of states in the P and D levels are different (6 and 10 respectively), so the proportionality constants must be different.

However, you can do it if you normalise the statistical weights so that their sum for the P or D levels is 1. So the weight for 2P1/2 = 2/(2+4) = 1/3, for 2P3/2 is 2/3, 2D3/2 2/5, and 2D5/2 3/5. Then you get q = 15a for both P and D.
 
  • Like
Likes hicetnunc and TSny
Alright, that cleared it up! Thanks a lot!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top