Relativistic momentum (Lorentz boost) low velocity limit

Neutrinos02
Messages
43
Reaction score
0
Hello,

If I have a momenta pμ=(E,px,py,pz) and transform it via lorentz boost in x-direction with velocity v I'll get for the new 0th component E′=γE+γvpx why is this in the limit of low velocities the same as transforming the energy by a galilei transformation with velocity v? For γvpx i get something like vpx+O(v³) and with a galilei transformation I'll have terms (with px=mu) like 1/2m(u−v)²=1/2mu²−vpx+1/2mv². So in the relativistic case I got the wrong sing for vpx+O(v³)and lost the 1/2mv²? Did I make a mistake?

Thanks for help
Neutrinos
 
Physics news on Phys.org
For the sign error, if if you have (u-v) in the Galilean case, you need E′=γE-γvpx for the corresponding relativistic case. The rest is just algebra, but I am not disposed to work it out right now.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top