- #1
PaulMurphy
- 7
- 0
I don't know enough physics to know where my reasoning or assumptions are incorrect in this post. Please point me in the right direction so I can fill the holes in my knowledge that led to this conjecture:
In Einstein’s Theory of Relativity, there is no absolute motion, no absolute rest and every differentially moving frame of reference is equally valid. Observers in differentially moving frames of reference will measure an object’s speed, radioactive decay rate (time) and mass to have different values. These measurements from differentially moving frames of reference are all equally valid.
In the case of gravity, I suggest that an observer in one frame of reference will map the gravitational fields present in the Universe differently than an observer in a differentially moving frame of reference. In essence, each relatively moving frame of reference has a separate gravitational topology of the Universe. They would each create a different map of gravitational fields from their own equally valid perspectives.
I suggest that every particle that could potentially be observed has a range of properties that would be observed to have different values when measured from differentially moving frames of reference.
If particles could theoretically be measured to have different values for properties when viewed from relatively moving frames of reference, then maybe the values of these properties are described by a separate history in a way similar to Feynman’s Sum Over Histories and the probability wave for each property has the locally highest probability for the most likely value in each local frame of reference.
Thanks!
Paul Murphy
In Einstein’s Theory of Relativity, there is no absolute motion, no absolute rest and every differentially moving frame of reference is equally valid. Observers in differentially moving frames of reference will measure an object’s speed, radioactive decay rate (time) and mass to have different values. These measurements from differentially moving frames of reference are all equally valid.
In the case of gravity, I suggest that an observer in one frame of reference will map the gravitational fields present in the Universe differently than an observer in a differentially moving frame of reference. In essence, each relatively moving frame of reference has a separate gravitational topology of the Universe. They would each create a different map of gravitational fields from their own equally valid perspectives.
I suggest that every particle that could potentially be observed has a range of properties that would be observed to have different values when measured from differentially moving frames of reference.
If particles could theoretically be measured to have different values for properties when viewed from relatively moving frames of reference, then maybe the values of these properties are described by a separate history in a way similar to Feynman’s Sum Over Histories and the probability wave for each property has the locally highest probability for the most likely value in each local frame of reference.
Thanks!
Paul Murphy