Relevance of an orphaned equation

Click For Summary
SUMMARY

The discussion centers on the challenges of integrating a function that appears to be discontinuous along the line x=y, leading to divergent results. Participants, including Charles Link, analyze the implications of a minus sign in the function's expression, questioning its validity as a probability distribution. The conversation highlights the complexities of integrating functions with undefined means, specifically referencing the Lorentzian distribution, f(x)=1/(π(1+x²)), which also exhibits divergence in its mean calculation. Ultimately, the consensus is that the original problem is ill-posed, necessitating a redefinition of the function for meaningful analysis.

PREREQUISITES
  • Understanding of integration techniques, particularly in multiple dimensions.
  • Familiarity with probability distributions, specifically the Lorentzian distribution.
  • Knowledge of concepts related to discontinuous functions and their implications in calculus.
  • Basic grasp of anti-symmetric functions and their properties in mathematical analysis.
NEXT STEPS
  • Research the properties of the Lorentzian distribution and its applications in statistics.
  • Learn about absolutely integrable functions and their significance in mathematical analysis.
  • Explore the implications of discontinuous functions in integration and probability theory.
  • Investigate alternative definitions for functions with problematic integrals, such as f(x,y)=exp(-|x-y|).
USEFUL FOR

Mathematicians, statisticians, and students engaged in advanced calculus or probability theory, particularly those interested in the nuances of integration and function behavior.

nomadreid
Gold Member
Messages
1,762
Reaction score
248
I came across an equation in a disconnected piece of my notes, and I remember that it was an instance of something, but I can't remember what. (I see how to do the integration, that is not what I am worried about.) Does anyone recognize either the function or the integration as an example of something?
(This would be a very weak maths question, so I didn't put it in the mathematics rubric.)

unknown equation.png

It appears to be discontinuous along the line x=y, so it would be strange as, say, a probability distribution, no?
 
Last edited:
Mathematics news on Phys.org
I question the minus sign on the second expression. Otherwise by symmetry, wouldn't the double integral result in zero as the result?
 
  • Like
Likes   Reactions: fresh_42 and nomadreid
I just tried integrating it over the section ## y>x ##, and I got that it diverges. It looks to me like this thing may be some kind of limit for the line ## y=x ##, but it doesn't seem to make much sense. Otherwise, perhaps I erred in my computation of the integral.
 
  • Like
Likes   Reactions: nomadreid
Thanks, Charles Link. Here is my integration; I would be grateful if you find my error

integration step 1.png
integration step 2.png

Integration last step.png
 
Both sections of the integral diverge. You can match up each little area of ## y>x ## with one that is opposite for ## y<x ##, so they cancel each other, but you can not compute either section by itself and get a finite answer. I'm not an expert on this topic, but IMO that is poor mathematics and that type of cancellation doesn't work. It is basically the step where you cancel the blue -1 with the red +1.

What you did is interesting, but it doesn't work. :)
 
  • Like
Likes   Reactions: nomadreid
and a follow-on: I couldn't find that discussion when I searched for it, but it reminds me of a previous discussion on PF a few years ago where several were discussing the (il)legitimacy of the Lorentzian distribution where the mean is not zero, even though you can balance the integral on both sides.
 
  • Like
Likes   Reactions: nomadreid
Thanks, Charles Link. Perhaps I did take an incorrect integral from a PF discussion without noticing that it was invalid, and then tried to justify it by juggling the integration. Well, that is still a worthwhile attempt, in that it will lead me to look again at the calculation to figure out the errors. (So I quite like getting corrected, and thus am grateful to those who help me in this way.) So, thanks again!
 
  • Like
Likes   Reactions: Charles Link
The Lorentzian distribution is ## f(x)=\frac{1}{\pi (1+x^2)} ##. Try computing the mean and you will see what I am referring to. The mean is undefined, rather than being zero. The function is symmetric about ## x=0 ##, but when you try computing the mean, the integral ## \int \frac{x}{1+x^2}\, dx ##
is similar to what you have above. The part ## x<0 ## diverges, and the part ## x>0 ## diverges.

Edit: Note that the anti-symmetric function that you have (plus the positive values (=1) on the line ## y=x ##) gives the result (=1) that you got only with some handwaving that is not completely valid mathematically.
 
Last edited:
  • Like
Likes   Reactions: nomadreid
@nomadreid Please see the Edit in post 8 above.
Edit: I'm reading the OP again though, and it looks like you have the negative values on the line ## y=x ##. If you work through your post 4 more carefully, you might find you were not consistent with your limits of integration.
 
Last edited:
  • Like
Likes   Reactions: nomadreid
  • #10
The minus sign has been my problem, too. I haven't checked the integral, though. It only looked like the density function of an exponential distribution in two variables if there weren't the negative values. I also thought about Lie groups, but again, one ended up with determinant ##1## which is fine, but the other one with determinant ##-1## which is not so nice.
 
  • Like
Likes   Reactions: nomadreid and Charles Link
  • #11
@fresh_42 The minus sign is in there to make the function anti-symmetric about ## y=x ##, but I think it still needs some tricky handwaving to work the line ## y=x ##. It looks like from the statement of the problem in the OP that there are negative values on the line ## y=x ##, so I don't agree with the positive result of ## + 1 ## in the OP, even if you allow for some handwaving.
 
  • Like
Likes   Reactions: nomadreid and fresh_42
  • #12
Charles Link said:
@fresh_42 The minus sign is in there to make the function anti-symmetric about ## y=x ##, but I think it still needs some tricky handwaving to work the line ## y=x ##. It looks like from the statement of the problem in the OP that there are negative values on the line ## y=x ##, so I don't agree with the positive result of ## + 1 ## in the OP, even if you allow for some handwaving.
Yes, but it closed both doors I considered: probabilities and multiplicative groups. My internet search led me to fancy things like memory loss (exponential pdf) so I thought about something conditional if there only wasn't the minus.
 
  • Like
Likes   Reactions: nomadreid and Charles Link
  • #13
The function ##f## does not have a well-defined integral. This means that when you attempt to decompose the 2D integral into two nested 1D integrations, you can get different answers depending on how you choose the decomposition.

I believe the decomposition given in post #1 does indeed give an answer of ##+1##. However, if you were to integrate ##y## first and ##x## second, you'd get an answer of ##-1##, and if you integrated along lines in another direction you could get zero along each line, or ##\pm\infty## along different lines in yet another direction.

You can tell ##f## isn't integrable because ##|f|## isn't either, and there isn't any way to decompose the integration of ##|f|## to get a finite answer. (See Absolutely integrable function.)

This all goes to show that playing with ##\infty## is dangerous.
 
  • Like
Likes   Reactions: nomadreid, Charles Link and fresh_42
  • #14
If you do the ## dy ## integral on the lower right from ## y=0 ## to ## y=x-\Delta ##, that later results in an uncancelled term after a Taylor expansion of ## -\int\limits_{0}^{+\infty} \Delta \, dx ##. It appears you could assign almost any value you wish to this integral. Thereby I think the problem statement in the OP isn't entirely valid. Even with some handwaving it remains not well-defined.
 
  • Like
Likes   Reactions: nomadreid
  • #15
Thanks to all contributors -- from these comments, it is clear that the problem was ill-posed, and I can consider it dead. Several people said essentially that it might (or might not) be a valid distribution if it were not for the minus sign in front of exp(x-y), and there were also objections to the infinite range . So, would a redefinition of f as f(x,y)= exp(-|x-y|) for finite ranges for x and y be of any interest in any context?
 

Similar threads

Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K