Relevance of an orphaned equation

Click For Summary

Discussion Overview

The discussion revolves around an equation found in the notes of a participant, which appears to be discontinuous along the line x=y. Participants explore the implications of this discontinuity, particularly in the context of integration and potential interpretations as a probability distribution or other mathematical constructs.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant questions the validity of a minus sign in the equation, suggesting it may lead to a zero result by symmetry.
  • Another participant reports that integrating over the section where y>x results in divergence, speculating that the equation may represent a limit along the line y=x.
  • Concerns are raised about the cancellation of divergent integrals in the context of the equation, with one participant arguing that such cancellation is mathematically unsound.
  • A reference is made to a previous discussion on the legitimacy of the Lorentzian distribution when the mean is not zero, drawing parallels to the current equation's behavior.
  • Participants discuss the implications of negative values on the line y=x and their effects on the overall results of the integration.
  • One participant notes that the function does not have a well-defined integral, leading to different answers based on the order of integration.
  • Another participant points out that the problem statement may not be valid due to the nature of the integral and the presence of the minus sign.
  • A suggestion is made to redefine the function to avoid issues related to the infinite range and the minus sign, proposing a new form for potential interest.

Areas of Agreement / Disagreement

Participants express multiple competing views regarding the validity of the equation, the implications of the minus sign, and the nature of the integrals involved. The discussion remains unresolved, with no consensus on the equation's legitimacy or potential redefinitions.

Contextual Notes

Participants highlight limitations related to the equation's discontinuity, divergence of integrals, and the implications of negative values. There is also mention of the dangers of manipulating infinite values in integration.

nomadreid
Gold Member
Messages
1,766
Reaction score
251
I came across an equation in a disconnected piece of my notes, and I remember that it was an instance of something, but I can't remember what. (I see how to do the integration, that is not what I am worried about.) Does anyone recognize either the function or the integration as an example of something?
(This would be a very weak maths question, so I didn't put it in the mathematics rubric.)

unknown equation.png

It appears to be discontinuous along the line x=y, so it would be strange as, say, a probability distribution, no?
 
Last edited:
Mathematics news on Phys.org
I question the minus sign on the second expression. Otherwise by symmetry, wouldn't the double integral result in zero as the result?
 
  • Like
Likes   Reactions: fresh_42 and nomadreid
I just tried integrating it over the section ## y>x ##, and I got that it diverges. It looks to me like this thing may be some kind of limit for the line ## y=x ##, but it doesn't seem to make much sense. Otherwise, perhaps I erred in my computation of the integral.
 
  • Like
Likes   Reactions: nomadreid
Thanks, Charles Link. Here is my integration; I would be grateful if you find my error

integration step 1.png
integration step 2.png

Integration last step.png
 
Both sections of the integral diverge. You can match up each little area of ## y>x ## with one that is opposite for ## y<x ##, so they cancel each other, but you can not compute either section by itself and get a finite answer. I'm not an expert on this topic, but IMO that is poor mathematics and that type of cancellation doesn't work. It is basically the step where you cancel the blue -1 with the red +1.

What you did is interesting, but it doesn't work. :)
 
  • Like
Likes   Reactions: nomadreid
and a follow-on: I couldn't find that discussion when I searched for it, but it reminds me of a previous discussion on PF a few years ago where several were discussing the (il)legitimacy of the Lorentzian distribution where the mean is not zero, even though you can balance the integral on both sides.
 
  • Like
Likes   Reactions: nomadreid
Thanks, Charles Link. Perhaps I did take an incorrect integral from a PF discussion without noticing that it was invalid, and then tried to justify it by juggling the integration. Well, that is still a worthwhile attempt, in that it will lead me to look again at the calculation to figure out the errors. (So I quite like getting corrected, and thus am grateful to those who help me in this way.) So, thanks again!
 
  • Like
Likes   Reactions: Charles Link
The Lorentzian distribution is ## f(x)=\frac{1}{\pi (1+x^2)} ##. Try computing the mean and you will see what I am referring to. The mean is undefined, rather than being zero. The function is symmetric about ## x=0 ##, but when you try computing the mean, the integral ## \int \frac{x}{1+x^2}\, dx ##
is similar to what you have above. The part ## x<0 ## diverges, and the part ## x>0 ## diverges.

Edit: Note that the anti-symmetric function that you have (plus the positive values (=1) on the line ## y=x ##) gives the result (=1) that you got only with some handwaving that is not completely valid mathematically.
 
Last edited:
  • Like
Likes   Reactions: nomadreid
@nomadreid Please see the Edit in post 8 above.
Edit: I'm reading the OP again though, and it looks like you have the negative values on the line ## y=x ##. If you work through your post 4 more carefully, you might find you were not consistent with your limits of integration.
 
Last edited:
  • Like
Likes   Reactions: nomadreid
  • #10
The minus sign has been my problem, too. I haven't checked the integral, though. It only looked like the density function of an exponential distribution in two variables if there weren't the negative values. I also thought about Lie groups, but again, one ended up with determinant ##1## which is fine, but the other one with determinant ##-1## which is not so nice.
 
  • Like
Likes   Reactions: nomadreid and Charles Link
  • #11
@fresh_42 The minus sign is in there to make the function anti-symmetric about ## y=x ##, but I think it still needs some tricky handwaving to work the line ## y=x ##. It looks like from the statement of the problem in the OP that there are negative values on the line ## y=x ##, so I don't agree with the positive result of ## + 1 ## in the OP, even if you allow for some handwaving.
 
  • Like
Likes   Reactions: nomadreid and fresh_42
  • #12
Charles Link said:
@fresh_42 The minus sign is in there to make the function anti-symmetric about ## y=x ##, but I think it still needs some tricky handwaving to work the line ## y=x ##. It looks like from the statement of the problem in the OP that there are negative values on the line ## y=x ##, so I don't agree with the positive result of ## + 1 ## in the OP, even if you allow for some handwaving.
Yes, but it closed both doors I considered: probabilities and multiplicative groups. My internet search led me to fancy things like memory loss (exponential pdf) so I thought about something conditional if there only wasn't the minus.
 
  • Like
Likes   Reactions: nomadreid and Charles Link
  • #13
The function ##f## does not have a well-defined integral. This means that when you attempt to decompose the 2D integral into two nested 1D integrations, you can get different answers depending on how you choose the decomposition.

I believe the decomposition given in post #1 does indeed give an answer of ##+1##. However, if you were to integrate ##y## first and ##x## second, you'd get an answer of ##-1##, and if you integrated along lines in another direction you could get zero along each line, or ##\pm\infty## along different lines in yet another direction.

You can tell ##f## isn't integrable because ##|f|## isn't either, and there isn't any way to decompose the integration of ##|f|## to get a finite answer. (See Absolutely integrable function.)

This all goes to show that playing with ##\infty## is dangerous.
 
  • Like
Likes   Reactions: nomadreid, Charles Link and fresh_42
  • #14
If you do the ## dy ## integral on the lower right from ## y=0 ## to ## y=x-\Delta ##, that later results in an uncancelled term after a Taylor expansion of ## -\int\limits_{0}^{+\infty} \Delta \, dx ##. It appears you could assign almost any value you wish to this integral. Thereby I think the problem statement in the OP isn't entirely valid. Even with some handwaving it remains not well-defined.
 
  • Like
Likes   Reactions: nomadreid
  • #15
Thanks to all contributors -- from these comments, it is clear that the problem was ill-posed, and I can consider it dead. Several people said essentially that it might (or might not) be a valid distribution if it were not for the minus sign in front of exp(x-y), and there were also objections to the infinite range . So, would a redefinition of f as f(x,y)= exp(-|x-y|) for finite ranges for x and y be of any interest in any context?
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
821
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
24
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
41
Views
7K