MHB Remainder of $3^{2^n}-1$ Divided by $2^{n+3}$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Remainder
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find the remainder when $3^{2^n}-1$ is divided by $2^{n+3}$
 
Mathematics news on Phys.org
kaliprasad said:
find the remainder when $3^{2^n}-1$ is divided by $2^{n+3}$
[sp]Claim: $3^{2^n}-1$ is an odd multiple of $2^{n+2}$.

Proof by induction: Base case ($n=1$) is true because $3^{2^1}-1 = 3^2-1 = 8$, which is an odd multiple of $2^{1+2} = 2^3 = 8.$ For the inductive step, $3^{2^{n+1}} - 1 = (3^{2^n}-1) (3^{2^n}+1)$ (difference of two squares). By the inductive hypothesis, the first factor is an odd multiple of $2^{n+2}$. The second factor is $(3^{2^n}-1) + 2$ which, again by the inductive hypothesis, is an odd multiple of $2$. Therefore the product $3^{2^{n+1}} - 1$ of the two factors is an odd multiple of $2^{n+3}$, which completes the inductive step.

It follows that the remainder when $3^{2^n}-1$ is divided by $2^{n+3}$ is $2^{n+2}$.[/sp]
 
It's been over a decade since I've done these kinds of problems on a regular basis - and I can't top Opalg's delicious proof above (nicely done! (Sun) ) - but I'm just wondering, would it not be easier if you were to...

write $$3^{2^n}-1$$ as $$9^n-1$$ and $$2^{n+3}$$ as $$8\cdot 2^n$$

?
 
DreamWeaver said:
It's been over a decade since I've done these kinds of problems on a regular basis - and I can't top Opalg's delicious proof above (nicely done! (Sun) ) - but I'm just wondering, would it not be easier if you were to...

write $$3^{2^n}-1$$ as $$9^n-1$$ and $$2^{n+3}$$ as $$8\cdot 2^n$$

?

[sp]$$3^{2^n} = 3^{(2^n)} \ne (3^2)^n = 3^{2n} = 9^n$$[/sp]
 
Bacterius said:
[sp]$$3^{2^n} = 3^{(2^n)} \ne (3^2)^n = 3^{2n} = 9^n$$[/sp]

Egg on face! Ha ha! Thanks for that... I don't know what I was thinking there... :o:o:o
 
good solution by opalg
here is another
$3^{2^n} - 1 = (3^{2^{n-1}} +1) (3^{2^{n-1}} -1)$
= $(3^{2^{n-1}} +1) (3^{2^{n-2}} +1)(3^{2^{n-2}} -1$
= $(3^{2^{n-1}} +1) (3^{2^{n-2}} +1)\cdots(3^2+1)(3^2-1)$

now there are 1st n-1 terms of the form $3^{2^k} + 1 $ where k = n-1 to 1

$3^{2^ k} - 1 = 3^{2x} - 1 = 9^x - 1$ as $2^k$ is even so

$3^{2^k} -1 \mod 4 = 0$

$3^{2^k} +1 \mod 4 = 2$

so $3^{2^k} +1 = 4 m + 2 = 2(2m+ 1)$

there are n-1 numbers of the form 2(2m+1) and last number is 8.
so product = $8 * 2^{n-1} * (2y + 1) = y . 2^{n+3} + 2 ^{n+2}$

so $product \mod 2^{n+3} = 2 ^{n+2}$

hence $2^{n+2}$ is the desired remainder
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top