Remainder of $3^{2^n}-1$ Divided by $2^{n+3}$

  • Context: MHB 
  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Remainder
Click For Summary
SUMMARY

The remainder of \(3^{2^n}-1\) when divided by \(2^{n+3}\) is \(2^{n+2}\). This conclusion is established through mathematical induction, starting with the base case where \(n=1\), resulting in \(3^{2^1}-1 = 8\), which is an odd multiple of \(2^3\). The inductive step confirms that \(3^{2^{n+1}} - 1\) is also an odd multiple of \(2^{n+3}\) by utilizing the difference of squares and the inductive hypothesis. Thus, the claim holds true for all integers \(n \geq 1\).

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with properties of exponents
  • Knowledge of modular arithmetic
  • Basic algebraic manipulation techniques
NEXT STEPS
  • Study mathematical induction proofs in depth
  • Explore properties of powers in modular arithmetic
  • Learn about the difference of squares in algebra
  • Investigate further examples of remainders in number theory
USEFUL FOR

Mathematicians, students studying number theory, educators teaching modular arithmetic, and anyone interested in proofs involving mathematical induction.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find the remainder when $3^{2^n}-1$ is divided by $2^{n+3}$
 
Mathematics news on Phys.org
kaliprasad said:
find the remainder when $3^{2^n}-1$ is divided by $2^{n+3}$
[sp]Claim: $3^{2^n}-1$ is an odd multiple of $2^{n+2}$.

Proof by induction: Base case ($n=1$) is true because $3^{2^1}-1 = 3^2-1 = 8$, which is an odd multiple of $2^{1+2} = 2^3 = 8.$ For the inductive step, $3^{2^{n+1}} - 1 = (3^{2^n}-1) (3^{2^n}+1)$ (difference of two squares). By the inductive hypothesis, the first factor is an odd multiple of $2^{n+2}$. The second factor is $(3^{2^n}-1) + 2$ which, again by the inductive hypothesis, is an odd multiple of $2$. Therefore the product $3^{2^{n+1}} - 1$ of the two factors is an odd multiple of $2^{n+3}$, which completes the inductive step.

It follows that the remainder when $3^{2^n}-1$ is divided by $2^{n+3}$ is $2^{n+2}$.[/sp]
 
It's been over a decade since I've done these kinds of problems on a regular basis - and I can't top Opalg's delicious proof above (nicely done! (Sun) ) - but I'm just wondering, would it not be easier if you were to...

write $$3^{2^n}-1$$ as $$9^n-1$$ and $$2^{n+3}$$ as $$8\cdot 2^n$$

?
 
DreamWeaver said:
It's been over a decade since I've done these kinds of problems on a regular basis - and I can't top Opalg's delicious proof above (nicely done! (Sun) ) - but I'm just wondering, would it not be easier if you were to...

write $$3^{2^n}-1$$ as $$9^n-1$$ and $$2^{n+3}$$ as $$8\cdot 2^n$$

?

[sp]$$3^{2^n} = 3^{(2^n)} \ne (3^2)^n = 3^{2n} = 9^n$$[/sp]
 
Bacterius said:
[sp]$$3^{2^n} = 3^{(2^n)} \ne (3^2)^n = 3^{2n} = 9^n$$[/sp]

Egg on face! Ha ha! Thanks for that... I don't know what I was thinking there... :o:o:o
 
good solution by opalg
here is another
$3^{2^n} - 1 = (3^{2^{n-1}} +1) (3^{2^{n-1}} -1)$
= $(3^{2^{n-1}} +1) (3^{2^{n-2}} +1)(3^{2^{n-2}} -1$
= $(3^{2^{n-1}} +1) (3^{2^{n-2}} +1)\cdots(3^2+1)(3^2-1)$

now there are 1st n-1 terms of the form $3^{2^k} + 1 $ where k = n-1 to 1

$3^{2^ k} - 1 = 3^{2x} - 1 = 9^x - 1$ as $2^k$ is even so

$3^{2^k} -1 \mod 4 = 0$

$3^{2^k} +1 \mod 4 = 2$

so $3^{2^k} +1 = 4 m + 2 = 2(2m+ 1)$

there are n-1 numbers of the form 2(2m+1) and last number is 8.
so product = $8 * 2^{n-1} * (2y + 1) = y . 2^{n+3} + 2 ^{n+2}$

so $product \mod 2^{n+3} = 2 ^{n+2}$

hence $2^{n+2}$ is the desired remainder
 
Last edited:

Similar threads

Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K