Remember that a minimizer is not necessarily unique.

  • Thread starter Thread starter forumfann
  • Start date Start date
  • Tags Tags
    Functions
forumfann
Messages
24
Reaction score
0
Let
f(x):=\frac{1+(1+x)^{4}+(1-2x)^{4}}{\sqrt[4]{1+x^{4}}}
and x_{0} be the minimizer of f(x).
Is it true that
x_{0} is the maximizer of
g(x):=\frac{1+(1+x)(1+x_{0})^{3}+(1-2x)(1-2x_{0})^{3}}{\sqrt[4]{1+x^{4}}}?

Thanks in advance for any helpful answer.
 
Physics news on Phys.org
forumfann said:
Let
f(x):=\frac{1+(1+x)^{4}+(1-2x)^{4}}{\sqrt[4]{1+x^{4}}}
and x_{0} be the minimizer of f(x).
Is it true that
x_{0} is the maximizer of
g(x):=\frac{1+(1+x)(1+x_{0})^{3}+(1-2x)(1-2x_{0})^{3}}{\sqrt[4]{1+x^{4}}}?

Thanks in advance for any helpful answer.

extreminizer?? I've never seen that word before.

It's given that x0 is the minimizer of f, which means that f(x0) <= f(x) for all x in the domain of f.

What can you say about g(x0)? You might want to compare f(x0) and g(x0).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top