MHB Residue Calculation for Contour $|z-i|=1$

Dustinsfl
Messages
2,217
Reaction score
5
For the contour $|z| = 2$

$$
\int_C\frac{z + 1}{z^2 + 1}dz = \int_C\frac{z + 1}{(z + i)(z - i)}dz = 2\pi i\sum\text{Res}_{z = z_j}\frac{z + 1}{z^2 + 1}
$$
Let $g(z) = z^2 + 1$. The zeros of $g$ occur when $z = \pm i$. $g'(\pm i)\neq 0$ so the poles are simple for $1/g$. Let $f(z) = \dfrac{z + 1}{z^2 + 1}$. Then
$$
\text{Res}_{z = i}f(z) = \frac{i + 1}{2i}\quad\text{and}\quad\text{Res}_{z = -i}f(z) = \frac{i - 1}{2i}.
$$
So
$$
\int_C\frac{z + 1}{z^2 + 1}dz = 2\pi i\sum\text{Res}_{z = z_j}\frac{z + 1}{z^2 + 1} = 2\pi i.
$$

Correct?

For the contour $|z-i|=1$

For this contour, the only residue is when $z = i$.
So the
$$
\text{Res}_{z = i}\frac{z + 1}{z^2 + 1} = \frac{i + 1}{2i} \ \text{Res}_{z = i}\frac{1}{z - i}
$$
Then
$$
\int_Cf(z)= \pi(1 + i)
$$

Correct?
 
Last edited:
Physics news on Phys.org
dwsmith said:
Correct?
Yes! (Star)
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...

Similar threads

Back
Top