Ricci scalar computation quick question

binbagsss
Messages
1,291
Reaction score
12

Homework Statement


[/B]
I am trying to compute ##R## from the 3-d metric: ##ds^{2}=d\chi^{2}+f^{2}\chi(d\theta^{2}+sin^{2}\theta d\phi^{2})##

Homework Equations


[/B]
The space also satisfies the below relationships:
##R=3k##
## R_{abcd}=\frac{1}{6}R(g_{ac}g_{db}-g_{ad}g_{bc})## [1]

The Attempt at a Solution


[/B]
I think I need to compute the christoffel symbols, then the Riemann tensor, and contract etc.
I'm just wondering whether the task is meant to be simplified by eq [1]?( I can see the metric is diagonal and so this reduces the number of non-zero christoffel symobols...)

Thanks in advance.
 
Last edited by a moderator:
Physics news on Phys.org
What is "k" in equation 1?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top