Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Ricci tensor along a Killing vector

  1. Jan 5, 2009 #1
    In Carrol's text, he shows that the covariant derivative of the Ricci scalar is zero along a Killing vector. He then goes on to say something about how this intuitively justifies our notion of geometry not changing along a Killing vector. This same informal reasoning would seem to imply that the Ricci tensor (and Riemann tensor for that matter) is covariantly constant along a Killing vector. However, Carroll has no discussion of this, nor can I find it in any other source (which leads me to think it's probably not true). My question is:
    Is the covariant derivative of the Ricci tensor zero along a Killing vector? If so, how does one show this? If not, is there a conceptual way of understanding this and/or what is a counterexample? Thanks.
     
  2. jcsd
  3. Jan 6, 2009 #2
    I expect so, but I couldn't prove it myself. But, after all, the Killing vector generates an isometry of the manifold, and the Ricci tensor is defined entirely in terms of the metric. Good luck!

    Dave
     
  4. Jan 7, 2009 #3

    Stingray

    User Avatar
    Science Advisor

    You need to use Lie derivatives for it to work out. For example,

    [tex]
    0 = \mathcal{L}_\xi R_{ab} = \xi^c \nabla_c R_{ab} + 2 R_{c(a} \nabla_{b)} \xi^c
    [/tex]

    The same thing works for the Riemann or Weyl tensors.
     
  5. Jan 9, 2009 #4
    So it is zero then?
     
  6. Jan 9, 2009 #5

    Stingray

    User Avatar
    Science Advisor

    Yes, Lie derivatives of curvature tensors with respect to Killing fields are always zero. The directional covariant derivative is not zero unless you're talking about a scalar quantity (like the Ricci scalar).
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Ricci tensor along a Killing vector
  1. Ricci Tensor (Replies: 5)

  2. Ricci tensor (Replies: 3)

Loading...