Shoelace Thm.
- 59
- 0
Homework Statement
Let ψ(x) = x sin 1/x for 0 < x ≤ 1 and ψ(0) = 0.
(a) If f : [-1,1] → ℝ is Riemann integrable, prove that f \circ ψ is Riemann integrable.
(b) What happens for ψ*(x) = √x sin 1/x?
Homework Equations
I've proven that if ψ : [c,d] → [a,b] is continuous and for every set of measure zero Z \subset [a,b], ψ^{\text{pre}}(Z) is a set of measure zero in [c,d], then if f is Riemann integrable, f \circ ψ is Riemann integrable. However, this doesn't apply well in this situation. What can I do? I have a hunch that both f \circ ψ and f \circ ψ* are Riemann integrable.