Rigid body, circular motion - centripetal acceleration

AI Thread Summary
Centripetal acceleration in circular motion is illustrated through examples like a cyclist leaning into a turn and a rolling coin. The discussion explores whether a rigid two-wheeled object, like a bicycle with locked wheels, can turn by leaning alone. It concludes that leaning without steering would not allow such an object to turn, as the front wheel would automatically adjust due to its geometry. The conversation also touches on gyroscopic forces, which help maintain balance in moving bicycles but do not apply to a rolling coin due to differences in mass and dynamics. Ultimately, leaning alone is insufficient for a rigid two-wheeled body to navigate a turn.
sa1988
Messages
221
Reaction score
23
Hi all, new user here and straight in with a question to help me understand something. Not sure if I'm in the right sub-forum but oh well.

Regarding circular motion and centripetal acceleration, we're given the classic example of a cyclist leaning into a corner to create a general equilibrium against the friction and the weight in the system, to allow for the resultant centripetal acceleration.

Also there's the example of rolling a coin along a surface. If the coin loses balance, it describes circles until it stops. If the coin were to somehow be going at constant velocity, and then it leant to one side, it would go in circles forever, right?

So my confusion is regarding the rigid body turning in a circle when made to lean. The coin does it, as can be observed quite easily by anyone. But... what about a two-wheel object such as a bicycle? If the front and rear wheel were rigidly locked in a straight line (so it's not really a bicycle but a rigid body with two inline wheels), would it still describe circles if it were made to lean? Or does bicycle turning actually involve a slight element of turning the handlebars?

I'll be honest, I'm just trying to clear something up on a motorcycle forum I use. I reckoned it's possible to make any rigid body turn by leaning it (not using handlebars at all), and so I used the coin analogy as an example, but then someone else said that it wouldn't be possible if there were two wheels rigidly inline with each other, and if you leaned you would just toppled over.

Intuitively it sounds like the guy is right, but then... another niggling bit of intuition tells me the bike should turn?

Which intuition is correct?! :confused:

Thanks all
 
Engineering news on Phys.org
sa1988 said:
But... what about a two-wheel object such as a bicycle? If the front and rear wheel were rigidly locked in a straight line (so it's not really a bicycle but a rigid body with two inline wheels), would it still describe circles if it were made to lean? Or does bicycle turning actually involve a slight element of turning the handlebars?

Because of the geometry of the bike steering, the front wheel will automatically turn the required amount even if you are not holding the handlebars. The wheels on a supermarket trolley "steer" the same way. The point where the front wheel touches the road is slightly behind where the axis of the steering tube would meet the road.

You can show that by holding the bike when it is stationary and leaning it over. The front wheel will turn as if you were leaning into the turn. (Do this standing beside the bike, not sitting on it, so your weight doesn't create too much friction between the front tire and the road and stop the front wheel turning).

You can start the bike leaning by bending your body sideways, so your center of mass is not above the wheels. Or you can start by steering the "wrong" way, so the bike starts to fall over with you leaning out, not in (the bike wheels are steering round a curve but the center of mass of you and the bike carries on a straight line), and then correct the steering to keep your balance.
 
Ok sure, thanks a lot. So, in short, it's not possible to make a two-wheeled rigid body describe a turn by leaning it. Right?

I was told it's also because of the gyroscopic forces caused by the forward motion? So it prefers to self right itself than to topple sideways. But why does't this happen when you roll a coin? Is it because of the difference in masses?

Thanks
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top