recenty i read the rocket equation, derivation of, however i think i have a slight confusion with signs(adsbygoogle = window.adsbygoogle || []).push({});

suppost initially a rocket has

mass= [tex]M[/tex]

velocity= [tex]\overrightarrow{v}[/tex]

then at a time dt later,

mass of rocket= [tex]M-dM[/tex]

velocity of rocket= [tex]\overrightarrow {v} +d\overrightarrow {v} [/tex]

mass of ejacted gas= [tex]dM[/tex]

velocity of gas= [tex]\overrightarrow{u}[/tex]

using conservation of momentum

[tex]\overrightarrow{v}M=(M-dM)(\overrightarrow{v}+d\overrightarrow{v})+\overrightarrow{u}dM[/tex]

[tex](\overrightarrow{u}-\overrightarrow{v})dM+Md\overrightarrow{v}=0[/tex]

but [tex](\overrightarrow{u}-\overrightarrow{v})[/tex]=velocity of gas relative to rocket

let [tex](\overrightarrow{u}-\overrightarrow{v})=\overrightarrow{U}[/tex]which is a constant

[tex]\overrightarrow{U}dM+Md\overrightarrow{v}=0[/tex]

[tex]-\int_{M_0}^{M}\frac{dM}{M}=\frac{1}{\overrightarrow{U}}\int_{\overrightarrow{v}_0}^{\overrightarrow{v}}d\overrightarrow{v}[/tex]

now [tex]-ln\frac{M}{M_0}=\frac{\overrightarrow{v}-\overrightarrow{v_0}}{\overrightarrow{U}}[/tex]

the problem is , when taking the velocity in the direciton rocket is travelling

[tex]\overrightarrow{U}<0[/tex]

[tex]-ln\frac{M}{M_0}>0[/tex]since [tex]\frac{M}{M_0}<1[/tex]

then

[tex]\overrightarrow{v}-\overrightarrow{v_0}<0[/tex] which is impossibe as the rocket is accelerating???

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Rocket equation

**Physics Forums | Science Articles, Homework Help, Discussion**