- 133

- 0

**1. Homework Statement**

Suppose that f(x) is a twice-differentiable function defined on the closed interval [a,b]. If f'(c) = 0 for a < c < b, which of the following must be true?

I. f(a) = f(b)

II. f has a relative extremum at x = c.

III. f has a point of inflection at x = c.

**2. Homework Equations**

Rolles Theorem states that there is a c such that f'(c) = 0 between [a,b] if f(x) is continuous on [a,b] and differentiable on (a,b).

**3. The Attempt at a Solution**

By Rolles Theorem, statement "I" must be correct. (That is, the endpoints are equal to each other). Is this correct?

I also put statement "II" as correct because since f'(c) = 0 for a < c < b... c must be a critical point or relative extremum. Question though: does this mean there are other points between a and b where f'(c) = 0 ?

For statement "III", I said this was incorrect. It's twice differentiable yes, but we don't know if f(x) has a point of inflection at x = c.

Thanks!