Rotating and kinetic energy kinematics

AI Thread Summary
The discussion centers on the physics of a slender rod rotating about one end and the implications of releasing it from rotational motion. When the rod is freed, there is confusion regarding the conservation of energy and the speed of the center of mass (CG). Initially, it is thought that the CG would maintain its speed, but calculations suggest that energy conservation requires a different speed upon release. The conversation also explores the behavior of a burst flywheel, where the CG speed may decrease after release, raising questions about the factors influencing rotational motion post-release. Ultimately, the key takeaway is that while the CG's linear velocity remains constant, rotational energy about the CG must also be considered for a complete understanding of the system's dynamics.
adiadidas15
Messages
1
Reaction score
0
Hello everyone,
I've run across an interesting Newtonian physics problem that I'd like some input on. The problem begins with a rotating object. Let's assume it is a slender rod rotating about one end with a given mass (m), length (L) and rotational speed (ω). This results in the rod having the energy:

KERot=1/6*mL2ω2

The question is what happens when this object is no longer held in rotational motion but becomes completely free of external forces.

Originally I had thought that the object must travel linearly maintaining the same speed of the CG as when rotating, such that:

v=rCGω
rCG=L/2
v=Lω/2

However, this would mean that energy is not conserved because:

KELin=1/2*m*(Lω/2)2=1/8*mL2ω2

This leads me to suspect that when the object is released, the whole object (including the CG) takes on the requisite speed for energy conservation in pure linear motion. In the case above this would be:

v=sqrt(1/3)*Lω

But notice that this speed is greater than the speed of the CG when rotating. It just seems wrong that the CG would instantly obtain a greater speed when releasing the object from the external force which kept it rotating.

Another interesting aspect is that this increase in speed is not a given. If the object were a flywheel with a radius F which then bursts into 3 120° sectors (a common failure mode), the sector CG would have been traveling at the following speed before burst:

v=4Fsin3(60°)ω/(2∏-3sin(60°))=0.705*Fω

But after bursting the speed would have to be (conserving energy in purely linear motion):

v=sqrt(1/3)Fω=0.577*Fω

This time the sector CG is traveling slower than before release. I guess I am having a hard time accepting that CG would change speeds. I also am cognizant of the fact that when released, these objects may well not travel in purely linear motion, but might also take on some new rotational speed about the CG. Could this be the component I am missing? This could make sense in the scenario where the CG wants to speed up (the rod). Maybe the CG maintains the same speed and the leftover energy turns into rotation about the CG. Visually this makes sense if I envsision a batter letting go of a bat. But this wouldn't help with the scenario where the CG wants to slow down (burst flywheel)... What characteristic about an object would make it spin after release? Maybe the radius of gyration being greater than that of the CG? This is true of the slender rod:

rG=sqrt(1/3)L>L/2

But not true of the burst flywheel:

rG=sqrt(1/6)F<0.705F

I welcome your thoughts!
 
Physics news on Phys.org
adiadidas15 said:
However, this would mean that energy is not conserved because:

KELin=1/2*m*(Lω/2)2=1/8*mL2ω2
You left out the rotational KE about the center of mass.

As soon as you remove all external forces, the velocity of the center of mass will not change. But there is still rotation about the center of mass.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top