A Same open sets + same bounded sets => same Cauchy sequences?

lugita15
Messages
1,553
Reaction score
15
Let ##d_1## and ##d_2## be two metrics on the same set ##X##. Suppose that a set is open with respect to ##d_1## if and only if it is open with respect to ##d_2##, and a set is bounded with respect to ##d_1## it and only if it is bounded with respect to ##d_2##. (In technical language, ##d_1## and ##d_2## induce the same topology and the same bornology.) My question is, does this imply that a sequence is Cauchy with respect to ##d_1## if and only it is Cauchy with respect to ##d_2##?

If not, does anyone know of an example of two metrics which share the same open sets and the same bounded sets, but have different collections of Cauchy sequences?
 
  • Like
Likes member 587159
Physics news on Phys.org
Set of all reciprocal of integers between 0 and 1. Let ##d_1## be defined as ##d_1(x,y)=1## if ##x\ne y##. Let ##d_2## be defined as ##d_2(x,y)=|x-y|## if ##x\ne y##. Then ##(\frac{1}{2},\frac{1}{3},...)## will be a Cauchy sequence for ##d_2##, but not for ##d_1##..
 
Thanks, that makes sense.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top