Sample spaces having equally likely outcomes

  • Thread starter Thread starter blob84
  • Start date Start date
blob84
Messages
25
Reaction score
0
If we flip a coin n-times,
what is the probability of the event $$A= \left \{there \space are \space k \space head \right \}$$.
I should find the number of elements of A,
the book says that is $$\binom{n}{k}$$ but for $$n=3$$ and $$k=2$$, all the possible outcomes are:
$$A= \left \{(h, h,h), (h, h, x), (h, x, h), (x, h, h) \right \}$$, where the position of h or x is the k-flip.
How to find this number?

PS. h is head.
 
Last edited:
Physics news on Phys.org
hi blob84! :smile:

i'm sorry, i don't understand this at all :redface:

your example seems to be k = 3, not n = 3, and i don't understand what those four outcomes are :confused:

can you explain again?​
 
k is the number of the head in A, int the example k = 2, any vector of A has at least two head.
you flip a coin n-times, so if n = 3 you flip the coin 3 times, the problem is to count the number of vectors in A.

PS. h is head.
 
Last edited:
blob84 said:
int the example k = 2, any vector of A has at least two head.

ah, now i see what you meant :smile:

no, if k = 2, there must be exactly 2 heads

so the possible outcomes are

1: xxx k = 0 (0 heads)

3: xxh xhx hxx k = 1 (1 head)

3: xhh hxh hhx k = 2 (2 heads)

1: hhh k = 3 (3 heads)​
 
yes only 2 head, oh my god!
Thanks.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top