Satellite orbiting around Earth - Spacetime Metric

unscientific
Messages
1,728
Reaction score
13

Homework Statement



The metric near Earth is ##ds^2 = -c^2 \left(1-\frac{2GM}{rc^2} \right)dt^2 + \left(1+\frac{2GM}{rc^2} \right)\left( dx^2+dy^2+dz^2\right)##.

(a) Find all non-zero christoffel symbols for this metric.
(b) Find satellite's period.
(c) Why does ##R^i_{0j0} \simeq \partial_j \Gamma^i_{00} - \partial_0 \Gamma^i_{0j} = \frac{1}{2}\partial_i \partial_j g_{00}##?
(d)Why does the separation grow in time?

2012_B5_Q1.png

Homework Equations

The Attempt at a Solution



Part(a)
Let lagrangian be ##-c^2 d\tau^2 = -c^2 \left(1-\frac{2GM}{rc^2} \right) \dot {t}^2 + \left(1+\frac{2GM}{rc^2}\right)(\dot x^2 + \dot y^2 + \dot z^2)##. The corresponding geodesic equations are
\ddot t + \frac{\left( \frac{GM}{r^2c^2} \right)}{1-\frac{2GM}{rc^2}} \dot r \dot t = 0
\ddot r - \frac{\left( \frac{GM}{r^2c^2} \right)}{1+\frac{2GM}{rc^2}} (\dot r)^2 + \frac{\left( \frac{GM}{r^2} \right)}{1+\frac{2GM}{rc^2}} (\dot t)^2 = 0
The christoffel symbols are given by ##\Gamma^t_{rt} = \Gamma^t_{tr} = \frac{\left( \frac{GM}{r^2c^2} \right)}{1-\frac{2GM}{rc^2}}, \Gamma^r_{rr} = -\frac{\left( \frac{GM}{r^2c^2} \right)}{1+\frac{2GM}{rc^2}}, \Gamma^r_{tt} = \frac{\left( \frac{GM}{r^2} \right)}{1+\frac{2GM}{rc^2}} ##.

Part (b)
Given ##x=R \cos(\omega \tau)## and ##y = R \sin (\omega \tau)## and ##z=0## we have ##dx^2 + dy^2 + dz^2 = (R\omega)^2 d\tau^2##. The metric now becomes
-c^2 d\tau^2 = -c^2 \left(1-\frac{2GM}{Rc^2} \right)dt^2 + \left(1+\frac{2GM}{Rc^2} \right)\left( (R\omega)^2 d\tau^2 \right)
This relates the time duration on Earth ##dt## with proper time on satellite ##d\tau##.
dt = \sqrt{\frac{1+ \left( \frac{R\omega}{c}\right)^2 \left( 1 + \frac{2GM}{Rc^2} \right) }{1 - \frac{2GM}{Rc^2}}} d\tau

Part(c)
Under the approximation ##\frac{GM}{rc^2} \ll 1## the christoffel symbols become ##\Gamma^t_{rt} \approx \frac{GM}{r^2c^2}, \Gamma^r_{rr} \approx -\frac{GM}{r^2c^2}, \Gamma^r_{tt} \approx \frac{GM}{r^2}##.
Not sure why ##R^i_{0j0} \simeq \partial_j \Gamma^i_{00} - \partial_0 \Gamma^i_{0j} = \frac{1}{2}\partial_i \partial_j g_{00}## holds. Is there some trick here?

Regardless, we have
\frac{1}{2}\partial_i \partial_j g_{00} = -\frac{GM}{c^2} \partial_i \partial_j \left[ (x_kx_k)^{-\frac{1}{2}}\right]
= \frac{GM}{c^2} \partial_i \left[ (x_kx_k)^{-\frac{3}{2}} x_j \right]
= \frac{GM}{c^2} \left[ \delta_{ij} (x_kx_k)^{-\frac{3}{2}}-3(x_kx_k)^{-\frac{5}{2}} x^i x^j \right]
\frac{1}{2}\partial_i \partial_j g_{00} = \frac{GM}{c^2 r^3} \left[ \delta_{ij} -3\frac{x^i x^j}{r^2} \right]

Part(d)
I suppose one is nearer to the Earth and experiences a stronger field than other. Thus the one closer to Earth experiences a greater acceleration, so the spatial distances between them increases.
 
Last edited:
Physics news on Phys.org
bumpp
 
bumpp on part (b) - satellite's period. The time experienced on Earth is ##dt## while proper period is ##d\tau##, so is the period of the satellite observed on Earth simply
T = \sqrt{\frac{1+ \left( \frac{R\omega}{c}\right)^2 \left( 1 + \frac{2GM}{Rc^2} \right) }{1 - \frac{2GM}{Rc^2}}} \left(\frac{2\pi}{\omega}\right)

?
 
bump on period in (b)
 
solved.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top