Scalar triple product and abstract vector space

AI Thread Summary
The discussion focuses on deriving the representation of a point x using the scalar triple product in a non-coplanar and non-orthogonal coordinate system. Participants clarify that the notation [a, b, c] refers to the scalar triple product, which can be expressed as a determinant of three vectors. The scalar triple product not only calculates the volume of the parallelepiped formed by the vectors but also indicates orientation based on the sign of the determinant. There is an emphasis on understanding how the magnitudes in the linear combination of vectors a, b, and c are derived, particularly through the determinant definition. Overall, the conversation seeks to deepen the understanding of the scalar triple product's implications in vector representation.
PcumP_Ravenclaw
Messages
105
Reaction score
4
Dear all,
Can anyone please explain how the linear combination of non-coplanar and non-orthogonal coordinate axes representing a point x as shown below is derived. Please use the reference text attached in this post to explain to me as i will find it a bit relevant. I want to know how it is derived using the scalar triple product and to get an understanding of what a scalar triple product does to three vectors apart from it calculating the volume of the parrellelepiped formed from the three vectors.

##
x = \dfrac{[x,b,c]}{[a,b,c]} a + \dfrac{[a,x,c]}{[a,b,c]} b + \dfrac{[a,b,x]}{[a,b,c]} c
##

I know that you can just add up the the magnitudes in the directions of the axes a,b and c to locate a point x. but how did the magnitudes in the direction a,b and c come to be

## \dfrac{[x,b,c]}{[a,b,c]} , \dfrac{[a,x,c]}{[a,b,c]} and \dfrac{[a,b,x]}{[a,b,c]} ##

Danke...
 

Attachments

  • Untitled (2).jpg
    Untitled (2).jpg
    51.5 KB · Views: 738
Mathematics news on Phys.org
PcumP_Ravenclaw said:
Dear all,
Can anyone please explain how the linear combination of non-coplanar and non-orthogonal coordinate axes representing a point x as shown below is derived. Please use the reference text attached in this post to explain to me as i will find it a bit relevant. I want to know how it is derived using the scalar triple product and to get an understanding of what a scalar triple product does to three vectors apart from it calculating the volume of the parrellelepiped formed from the three vectors.

##
x = \dfrac{[x,b,c]}{[a,b,c]} a + \dfrac{[a,x,c]}{[a,b,c]} b + \dfrac{[a,b,x]}{[a,b,c]} c
##

I know that you can just add up the the magnitudes in the directions of the axes a,b and c to locate a point x. but how did the magnitudes in the direction a,b and c come to be

## \dfrac{[x,b,c]}{[a,b,c]} , \dfrac{[a,x,c]}{[a,b,c]} and \dfrac{[a,b,x]}{[a,b,c]} ##

Danke...
There is some context missing here. What does the notation [0, a] mean? What does the notation [a, b, c] mean?

Also, in the text you provided, it says "not necessarily orthogonal," which is different from non-orthogonal as you wrote.
 
[0,a] stands for line segment formed from 0 to point a. It is just vector a. [a,b,c] is the standard notation for scalar triple product. ## [a,b,c] = a \cdot (b \times c) ##
 
The assumption is that ##\vec{x}## can be written as a linear combination of ##\vec{a}, \vec{b}, \text{and } \vec{c}##; that is, ##\vec{x} = \lambda \vec{a} + \mu \vec{b} + \nu \vec{c}##. ([0, a] seems like clumsy notation for ##\vec{a}##, IMO.)

I would start by using the determinant definition of the scalar triple product on this:
$$\frac{[x, b, c]}{[a, b, c]}$$
and using the assumption I listed above.
 
  • Like
Likes PcumP_Ravenclaw
Hey Mark44,

I just finished reading section 4.6 about orientation and determinants in the same book, Basically, the scalar triple product ## [x, b, c] ## is the (3 x 3) determinant of three vectors. It can be positive or negative denoting positive or negative orientation in either side of the two vectors. (by the way, when we say two vectors are positively or negatively orientated when taken their determinant we mean that the vector product of the two vectors has a particular direction (in either side of the plane of the two vectors) and a magnitude. What does it mean when the determinant of 3 vectors which gives a scalar value which is positive or negative based on scalar triple product definition? ). Determinant is the sum of product of the 3 elements from 3 different vectors including the sign of the permutation.

Can you form the connection between the vector cross product of 2 vectors and a (2 x 2) determinant and the scalar triple product and a (3 x 3) determinant?

Danke...
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top