Scaling of an eigenvalue with the coupling constant

spaghetti3451
Messages
1,311
Reaction score
31
Consider the Hamiltonian ##H = - \frac{d^2}{dx^2}+gx^{2N}##.

Scaling out the coupling constant ##g##, the eigenvalues scale as ##\lambda \propto g^{\frac{2}{N+2}}##.

So, we can drop the g dependence and just consider the numerical value of the eigenvalues and the associated spectral functions at ##g=1##.
I understand that if the eigenvalues do scale as ##\lambda \propto g^{\frac{2}{N+2}}##, then the eigenvalues remain on the same order of magnitude for increasing values of N (as a power of g). As a result, the value of g makes little difference to the value of the eigenvalues. That, I understand.

What I don't understand though is why the eigenvalues scale as ##\lambda \propto g^{\frac{2}{N+2}}## in the first place. Could somebody pleas explain? :(
 
Physics news on Phys.org
Try to introduce a new variable ##y=g^\alpha## and find a value of ##\alpha##, so that both the kinetic and the potential energy have the same pre-factor ##g^\beta##.
 
I believe you meant ##y=g^\alpha x##.
 
Of course, thank you!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top