Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Schrodinger eqn. and its relativistic generalisations

  1. Dec 17, 2006 #1
    I've suddenly run into a problem. This has probably arisen from the fact that I've yet to have (and may never have) formal teaching on the relativistic generalisation of QM.

    I see the Schrodinger equation proper as

    [tex]\hat{H}| \psi (t) \rangle = i\hbar \frac{d}{dt} | \psi (t) \rangle[/tex]

    Is this valid in the relativistic case? I guess it must be because wherever I have seen relativistic generalisations, they tend to be relativistic generalisations of the Hamiltonian of the single particle classical Hamiltonian [itex]p^2/2m.[/itex] And as it happens we can recast the above equation into some covariant form (is this coincedence or is it meant to happen?)

    But then I later realised that the Dirac equation is more the equation of motion for the spinor field, i.e. in QED, we use the Dirac (for electron spinor field) + EM (for photon field) + interaction (electron-photon) Lagrangian.

    In any of this, is the Schrodinger equation proper ever replaced by something else? Or is all we do is find Hamiltonians that describe our relevant particles? And does this apply to particles, or the associated field, or both?

    Thanks in advance.
     
    Last edited: Dec 17, 2006
  2. jcsd
  3. Dec 17, 2006 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Ys, it is.

    Of course it's not a coincidence, if the eqn is Lorentz invariant, then the Lorentz scalars must be made visible, i.e. using Lorentz space-time indices.

    Do you miss a "than" btw "more" and "the equation" ? If so, then you're wrong. The (IN)HOMOGENOUS Dirac eqn always describes the dynamics of the quantized Dirac field.

     
  4. Dec 18, 2006 #3

    Demystifier

    User Avatar
    Science Advisor

    In my opinion, this is one of the most important not yet satisfactorily solved questions in physics. For more details see
    http://arxiv.org/abs/quant-ph/0609163
    especially Secs. VII-IX.
     
  5. Dec 22, 2006 #4

    reilly

    User Avatar
    Science Advisor

    The cited paper's author doesn't get it. He's attacking a strawman. Anyone who's practiced QM knows full well that the idea of wave-particle duality is a useful metaphor, nothing less, nothing more. It, I think, makes the notion of and direct evidence for electron diffraction easier for many to grasp -- knowing of course that such a description is ultimately a fiction. This is worth a big deal of concern? (One of my QM professors, J.H. VanVleck, used to describe a beam of electrons as a flight of mosquitoes. Should he give up his Nobel Prize for being so simple minded as to equate inanimate objects with animate opjects? And, as I recall, he didn't even warn us that he was using figurative language.)

    Regards,
    Reilly Atkinson
     
  6. Jan 2, 2007 #5

    out of curiosity, did you read the paper? i thought it was interesting, if somewhat uninhibited.

    your professor probably didn't want to confuse you.
     
  7. Jan 5, 2007 #6

    reilly

    User Avatar
    Science Advisor

    Yes, I read the paper. Or, more correctly, I read more than half, but decided that reading more was not of interest to me. And, I do believe that is my right, without any explanation. (As a jazz musician, I say, man, that's a bunch of jive, ain't makin' the changes.)

    My professor was prone to jokes, used wonderful figurative language, and, rightfully so, assumed his student were sufficiently bright and sophisticated in the use of mathematics and of language to understand and benefit from his deviations from the straight and narrow. Generally speaking, most of us, even non-physicists can tell figurative language from straight and pragmatic expression. He was not in the slightest interested in any behavior that might demean his students.

    Your last comment says a lot more about you, than about me or Prof. VanVleck.


    Reilly Atkinson
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Schrodinger eqn. and its relativistic generalisations
  1. Schrodinger eqn. b.c. (Replies: 0)

  2. Schrodinger Eqn (Replies: 2)

Loading...