I Schrodinger equation and Heisenberg equation of motion

Josh1079
Messages
45
Reaction score
0
My question is that how does the Schrodinger equation arise from the Heisenberg equation of motion in the quantum field formalism.

blank.png

blank.png


These are from Hatfield's book. So I'm having some difficulties to reproduce (2.36) by plugging (2.55) into (2.37) primarily because H is an integral.

Thanks!
 
Physics news on Phys.org
Just use (2.54). Note that ##\hat{H}## is conserved in the Heisenberg picture, i.e., you can evaluate the integral at time ##t## (it doesn't depend on ##t## after all anyway). That's why you only need the canonical equal-time commutation relations (2.54).
 
Hi vanhees, great to see you again! Sorry I don't really follow you this time. I was also trying to use (2.54) and I guess I was stuck because I'm not familiar with an operator that is an integral.

So first of all, for the right side of (2.37) I'm not sure whether [H, \phi] = (\int dx \phi^* h \phi) \phi - \phi (\int dx \phi^* h \phi) or \int dx \phi^* h \phi \phi - \int \phi dx \phi^* h \phi, where h = -\frac{1}{2} \partial^2_x + V(x). Furthermore, when the operators are in the form h \phi \phi, is it equal to simply (h\phi) \phi or is it (h\phi)\phi + \phi (h\phi)?
 
Wait, I think I get something now.

Is it like this?

[H, \phi] = H\phi - \phi H = \int dx' \phi^*(x') h \phi(x') \phi(x) - \phi(x) \int dx' \phi^*(x') h \phi(x')
= \int dx' \phi^*(x') h \phi(x') \phi(x) - \int dx' \phi(x) \phi^*(x') h \phi(x')
the phi(x) can be taken inside the integral since it's independent of x', then by (2.54),
= \int dx' \phi^*(x') \phi(x) h \phi(x') - \int dx' \phi(x) \phi^*(x') h \phi(x') = \int \delta (x' - x) h \phi(x') dx' = h \phi(x)

Did I make any mistakes in the math?
 
Last edited:
I'm not familiar with your notation, and it's also good to write out the arguments. First of all you have
$$\hat{H}=\int_{\mathbb{R}} \mathrm{d} x \hat{\varphi}^*(t,x) \left (-\frac{1}{2} \Delta +V(x) \right) \hat{\varphi}(t,x).$$
Now ##\hat{H}## is not explicitly time dependent and that implies that it is conserved:
$$\frac{\mathrm{d}}{\mathrm{d} t} \hat{H}=[\hat{H},\hat{H}]+\partial_t \hat{H}=0.$$
That implies that you can use any ##t## in evaluating ##\hat{H}## since ##\hat{H}## doesn't depend on it. Now you have
$$[\hat{H},\hat{\varphi}(t,x)]=\int_{\mathbb{R}} \mathrm{d} x' \left [\hat{\varphi}^*(t,x') \left (-\frac{1}{2} \Delta' +V(x') \right) \hat{\varphi}(t,x'),\hat {\varphi}(t,x) \right ].$$
Now you can just use the equal-time commutator relations given in #1 to show (2.37). You also need the general formula
$$[\hat{A},\hat{B} \hat{C}]=[\hat{A},\hat{C}] \hat{B}+\hat{C} [\hat{A},\hat{B}],$$
valid for any three operators ##\hat{A}##, ##\hat{B}##, and ##\hat{C}##.

It is allowed to use ##t## in the integral for ##\hat{H}## as the time argument of the fields since ##\hat{H}## doesn't depend on time as argued above, and that's why you can use the equal-time commutation relations to evaluate this commutator.
 
  • Like
Likes bhobba
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
9
Views
3K
Replies
3
Views
2K
Replies
11
Views
2K
Replies
15
Views
3K
Replies
6
Views
2K
Replies
19
Views
2K
Back
Top