crowlma
- 8
- 0
Homework Statement
What is the expectation value of \hat{S}_{x} with respect to the state \chi = \begin{pmatrix}<br /> 1\\<br /> 0<br /> \end{pmatrix}?
\hat{S}_{x} = \frac{\bar{h}}{2}\begin{pmatrix}<br /> 0&1\\<br /> 1&0<br /> \end{pmatrix}
Homework Equations
<\hat{S}_{x}> = ∫^{\infty}_{-\infty}(\chi^{T})^{*}\hat{S}_{x}\chi
The Attempt at a Solution
So I have (\chi^{T})^{*} as equalling (1 0), giving me: \frac{\hbar}{2} ∫^{\infty}_{-\infty}\begin{pmatrix}<br /> 1&0<br /> \end{pmatrix}\begin{pmatrix}<br /> 0&1\\<br /> 1&0<br /> \end{pmatrix}\begin{pmatrix}<br /> 1\\<br /> 0<br /> \end{pmatrix} which simplifies to \frac{\hbar}{2} ∫^{\infty}_{-\infty}\begin{pmatrix}<br /> 1&0<br /> \end{pmatrix}\begin{pmatrix}<br /> 1\\<br /> 0<br /> \end{pmatrix} = 0. Is this right?