Second derivative of effective potential

dswatson
Messages
36
Reaction score
0
Determine the value of r in terms of l, k, and m for which the following function has a minimum.

V(r) = -(k/r) + (l^2/(2mr^2))

where l, k, and m are positive constants.

Prove that this is a minimum by showing that the second derivative of V(r) at the minimum is positive.

I have no idea how to even begin this...I am horrible at derivatives and am struggling in my physics class with them. Any help would be greatly appreciated.

I am then asked to derive Kepler's third law from Kepler's second law. So I feel I have a lot of work ahead of me.
 
Physics news on Phys.org
Then practice derivates!

Try this one:

what is the derivative with respect to x in this function: f(x) = x^a, where a is a real number, (non zero).

That is all you need for this particlar problem :-)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top