aCHCa
- 4
- 0
Homework Statement
Metric ansatz:
<br /> ds^{2} = e^{\tilde{A}(\tilde{\tau})} d\tilde{t} - d\tilde{r} - e^{\tilde{C}(\tilde{\tau})} dΩ<br />
where: d\tilde{r} = e^{\frac{B}{2}} dr
Homework Equations
How to calculate second fundamental form and mean curvature from this metric?
The Attempt at a Solution
Metric tensor:
g_{00}= e^{\tilde{A}(\tilde{\tau})}
g_{11}= -1
g_{22}= - e^{\tilde{C}(\tilde{\tau})}
g_{33}- e^{\tilde{C}(\tilde{\tau})} sin^2 θ
Second fundamental form:
h_{ij}= g_{kl} \Gamma^{k}_{ij} n^{l}
where:
i, j, k, l = 0, 1, 2, 3
n^{l} =normal vector = (0, 1, 0, 0)
so:
n^{0} = 0
n^{1} = 1
n^{2} = 0
n^{3} = 0
Second fundamental form:
h_{ij}= diag (\frac{1}{2}e^{\tilde{A}}\tilde{A'}, 0, \frac{1}{2}e^{\tilde{C}}\tilde{C'}, sin {θ} cos {θ})
Mean curvature:
h = g^{ij}h_{ij}= \frac{1}{2}\tilde{A'}-\frac{1}{2}\tilde{C'}-e^{-\tilde{C}}cot {θ}
Last edited: