Second order expansion of metric in free-fall

InsertName
Messages
26
Reaction score
0
Hello,

I have read that, in a freely-falling frame, the metric/ interval will be of the form:

ds2 = -c2dt2(1 + R0i0jxixj) - 2cdtdxi(\frac{2}{3} R0jikxjxk) + (dxidxjij - \frac{1}{3} Rikjlxkxl)

to second order.

Does anyone know where I could find a derivation of this result?
 
Physics news on Phys.org
InsertName, That's an interesting formula! It's derivation is almost immediate, except I have doubts about the absence of the time coordinate, and the factors of 1/3.

Expand the metric in a Taylor's series:
gμν = Aμν + Bμνσxσ + Cμσντxσxτ + ...
It's always possible to choose coordinates such that Aμν = ημν and Bμνσ = 0, and in these coordinates the Christoffel symbols vanish. Then the formula for the Riemann tensor reduces to
Rμσντ = ½(gμτ,σν + gσν,μτ - gμν,στ - gστ,μν) = Cμστν + Cτνμσ - Cμσντ - Cσμτν.
If you assume C to have the same symmetry as the Riemann tensor, then this is 4Cμστν, showing that Cμστν = (1/4)Rμσντ
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top