Second Order Predicate Logic vs. First Order

AI Thread Summary
Second-order predicate logic (PL2) can express concepts that first-order logic (PL1) cannot, particularly when it comes to quantifying over predicates or sets. Examples include statements like "There are only a finite number of grains of sand," which cannot be accurately represented in PL1 due to its inability to define the predicate "finite." Another example is the Geach-Kaplan sentence, "Some critics admire only each other," which lacks a first-order formalization. The limitations of PL1 arise from its compactness theorem, which affects how predicates are interpreted in different models. Understanding these distinctions is crucial for studying the nuances of predicate logic.
ryan14
Messages
2
Reaction score
0
Hey,

I'm studying Predicate Logic at the moment and I can't seem to wrap my head around the way that english sentences would convert into second order logic. What kind of sentence can be faithfully represented in PL2 but not in PL1? Sorry if this isn't the appropriate section; I'm actually in a Philosophy (of Math) class, so the sciences aren't really my strong suit.

Would "There exists an American philosopher" be one? Wiki mentions "There are no Albanian philosophers" but I don't see why this couldn't be translated into PL1 if you just made a predicate "is an Albanian philosopher." Or is that beyond the point?

Pretty much I'd like to see an example of what a PL2 sentence that couldn't be expressed in PL1 would look like.

Thanks,
Ryan
 
Mathematics news on Phys.org
Try these ones:

"There are only a finite number of grains of sand"

This cannot be correctly formalized in a first order language, because you can't define the predicate "finite".

Or the Geach-Kaplan sentence:

"Some critics admire only each other"

You may see the explanation why this last sentence doesn't have a first-order formalization here:

http://books.google.pt/books?id=sdL...BA#v=onepage&q=geach kaplan sentence&f=false"
 
Last edited by a moderator:
Thanks for the fast reply and the link. Reading it now.

"There are only a finite number of grains of sand."
^ Can you explain why this cannot be translated into PL1?

Thanks again.
 
Because if you try to define "finite" in FOL, you'll end up with a predicate that is true in models that don't have more than finite, but prefixed, number of elements, or one that it's true also in infinite domains. This is a consequence of the compactness theorem for FOL, see here (cor. 22):

http://plato.stanford.edu/entries/logic-classical/#5"
 
Last edited by a moderator:
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top