Solving d^2x/dt^2 + a/x = b: Approximations?

  • Thread starter Thread starter gabi.petrica
  • Start date Start date
gabi.petrica
Messages
3
Reaction score
0
I was trying to solve a physics problem which led me to an equation of the form:
d^2x/dt^2 + a/ x = b; Can this be solved without any aproximations beeing made?
 
Physics news on Phys.org
Depends.

Assuming a,b are constants, multiply by x^{\prime}, to get

x^{\prime} x^{\prime \prime} + a \frac{x^{\prime}}{x} = b x^{\prime}

now integrate to get

\frac{x^{\prime}^2}{2} + a \ln{x} = bx + c

(c is a constant). Rearrange to get t as a function of x, i.e.,

\frac{1}{\sqrt{2}} \int{\frac{dx}{\sqrt{bx + c - a \ln{x}}}} = t + const.

Other than that, I'm not sure.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top