Seeking formal derivation for common thermo equation

  • Thread starter Thread starter saybrook1
  • Start date Start date
  • Tags Tags
    Derivation Thermo
AI Thread Summary
The discussion centers on deriving a common thermodynamic equation related to entropy change during an isothermal process. The original poster seeks assistance in connecting this derivation to the first law of thermodynamics and the relationship between heat and entropy. They reference texts by Pathria and Schroeder, noting that Pathria suggests a derivation without the partition function, which complicates their understanding. A breakthrough occurs when they realize that the difference between two states can be used to derive the equation. The conversation concludes with a question about the applicability of the derived equation to adiabatic processes.
saybrook1
Messages
101
Reaction score
4
Hi guys,

I was hoping that someone might be able to help me out with a formal derivation of this common thermodynamic equation regarding the change in entropy during an isothermal change of state.

The first equation is what I would like to derive, and the second is where the book tells me to derive it from once we acknowledge that there is no energy change in an isothermal process. I've tried a few different ways but haven't had success yet. I'm thinking it has to do with the first law and then somehow relating heat to entropy.

entropy change.jpg


Anyway, thanks for any help. Even a link would rock!

Best regards

Here's a link to the image in case it won't load for you here:
http://imgur.com/a/s9qoP
 
Science news on Phys.org
Hello again. The best book I know of for Statistical Physics/Thermodynamics is F.Reif's book. He derives the case ## F=-kT ln Z ## and gives an extensive treatment of ## Z ## for ## N ## atoms using the Maxwell-Boltzmann Statistics with the ## N! ## Boltzmann factor in the denominator. ## Z=\zeta^N/N! ## where ## \zeta ## is the partition function for a single atom (of the gas). The derivation of ## \zeta ## is somewhat lengthy but not difficult. Once you get Z and F, the minus partial of F w.r.t. T at constant V I think is the entropy ## S ##.
 
  • Like
Likes saybrook1
Hello my friend! I've just returned from getting some late night tacos; I appreciate you responding to my post again. So, the text that I'm going through is Pathria and I also have the Schroeder undergrad text "Thermal Physics". The problem is that I think Pathria implies that you can derive eqn (1) without use of the partition function. This is at the end of chapter 1 of his book and the partition function has not been introduced in any form yet. I'm just banging my head on a way to derive eqn (1) from eqn (2) under an isothermal change of state(fixed N,T). I will however attempt your method. Thanks again!
 
  • Like
Likes Charles Link
Wooo I think I figured it out. I think you need to take eqn (2) and just take the difference like so: $$S_2(N,V_2,E) - S_1(N,V_1,E)$$
I'll report back and let you know how it goes!
 
Alright, so here it is. I actually found this solution while looking through the publicly available lectures notes of Alejandro L. Garcia of San Jose State University.
If anyone has anything to add, please do. A question that I still have about this, is that it doesn't seem like we needed to invoke an isothermal condition, so is this a general entropy change equation for adiabatic processes?
Entropy change solution.jpg
 
Back
Top