Self-dual and Anti Self-dual antisymmetric tensor

  • Thread starter Thread starter wphysics
  • Start date Start date
  • Tags Tags
    Tensor
wphysics
Messages
27
Reaction score
0
I am working on Chapter 5.6 of Weinberg QFT book vol1.

In page 231 and 232, he said (1,0) or (0,1) field corresponds to an antisymmetric tensor
<br /> F^{\mu\nu}<br />
that satisfies the further irreducibilitry 'duality' conditions
<br /> F^{\mu\nu}= \pm {{i}\over{2}} \epsilon ^{\mu\nu\lambda\rho}F_{\lambda \rho}<br />
for (1,0) and (0,1) fields, respectively.

I check that Self-dual antisymmetrc tensor has three independent components and so does Anti Self-dual antisymmetric tensor. So, I can guess that there might be correspondence between Self-dual(or Anti Self-dual) antisymmetric tensor and (1,0) field (or (0,1)field ).

But, I could not show how they are related to each other mathematically.

I would like you guys to show me that how we correspond Self-dual antisymmetric tensor with (1,0) field and
Anti Self-dual antisymmetric tensor with (0,1) field.

Thank you so much.
 
Physics news on Phys.org
Given Fμν, we define its dual as Fμν* = ½εμνστFστ. The self-dual and anti-selfdual tensors are complex combinations,
SFμν = Fμν + iFμν* and AFμν = Fμν - iFμν*.

It's easier to represent the F's as a pair of 3-vectors, Fμν = (E, B). Then Fμν* = (B, -E), SFμν = (E + iB, B - iE), and AFμν = (E - iB, B + iE).

This shows that SFμν and AFμν each have only three complex components.

Under a space rotation, all of these 3-vectors behave the same way. Under an infinitesimal rotation about an axis with unit vector ω, a 3-vector V transforms as dV = ω x V, and this applies equally well to E, B and E ± iB. The generators for spatial rotations are denoted J.

Under a finite boost, E' = γ(E + β x B), B' = γ(B - β x E), and the infinitesimal form of this is dE = β x B, dB = - β x E. Then d(E + iB) = β x (B - iE) = -i β x (E + iB) and d(E - iB) = i β x (E - iB). The generators for boosts are denoted K.

The Lorentz group is a direct product of two groups generated by J + iK and J - iK. I'm getting tired of writing down all the details, but if you combine the above results and calculate how (E ± iB) transform under (J ± iK), you'll find the changes add in one case and cancel in the other, indicating that these quantities transform exactly as the (1,0) and (0,1) representations must.
 
Last edited:
Sir(Bill_K),
can you give me some reference on this topic.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top