Semi-Positive Definiteness of Product of Symmetric Matrices

iamhappy
Messages
3
Reaction score
0
Here is my problem. Any ideas are appreciated.

Let P be a projection matrix (symmetric, idempotent, positive semidefinite with 0 or 1 eigenvalues). For example, P = X*inv(X'*X)*X' where X is a regressor matrix in a least square problem.

Let A be a symmetric real matrix with only integer elements where the center submatrix (of a given size) is a (square, of course) matrix with identical elements, say 5. But the other elements of A are all smaller than the (common) element of the center submatrix (say, 5).

Q1: Is (P.*A)*P psd, nsd or indeterminant? where P.*A is the element-wise product of P and A (the Hadamard product)

Q2: Is P*(P.*A)*(I-P) psd, nsd or indeterminant? where I is the identity matrix of conformable size.

Comments: I have done some numerical examples in Matlab and it seems that the first matrix is psd and the second matrix has all zero eigenvalues (but not a zero matrix). Any idea as to how to prove the results?
 
Physics news on Phys.org


I think I can show Q2 now. Q1 is still a puzzle. Any help is appreciated.
Also regarding the matrix A, does anyone know of a theorem regarding the center submatrix of a matrix?
 


To put this simply, we know in general that if A and B are psd their product A*B is NOT necessarily psd.

Does anyone know when the product is indeed psd? I am looking for conditions on A and B to ensure the psd of their product.

Thanks a bunch
 


AB is not even necessarily symmetric. Consider the case where A and B commute (simple case A,B diagonal).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top