MathWarrior
- 267
- 5
y' = (3+y)(1-y)
y(0) = 2
Attempt to solve:
\frac{dy}{dx}=(3+y)(1-y)
(3+y)(1-y)dy = dx
\int(3+y)(1-y)dy = \int dx
Partial Fractions:
\frac{A}{(3+y)} + \frac{B}{(1-y)}
A(1-y)+B(3+y)
Let y= 1 or -3
A = 1/4
B = 1/4
\frac{1}{4}\int \frac{1}{(3+y)} dy + \frac{1}{4}\int \frac{1}{(1-y)} dy
1/4(ln(3+y)+ln(1-y)) + C = x
Re-arranging.
ln(3+y)+ln(1-y) = 4x+C
(3+y)+(1-y) = e^{(4x+C)}
Did I do it right so far? How do figure out y if that is the case?
y(0) = 2
Attempt to solve:
\frac{dy}{dx}=(3+y)(1-y)
(3+y)(1-y)dy = dx
\int(3+y)(1-y)dy = \int dx
Partial Fractions:
\frac{A}{(3+y)} + \frac{B}{(1-y)}
A(1-y)+B(3+y)
Let y= 1 or -3
A = 1/4
B = 1/4
\frac{1}{4}\int \frac{1}{(3+y)} dy + \frac{1}{4}\int \frac{1}{(1-y)} dy
1/4(ln(3+y)+ln(1-y)) + C = x
Re-arranging.
ln(3+y)+ln(1-y) = 4x+C
(3+y)+(1-y) = e^{(4x+C)}
Did I do it right so far? How do figure out y if that is the case?