kingwinner
- 1,266
- 0
1) Prove that
lim x_k exsts and find its value if {x_k} is defined by
k->inf
x_1 = 1 and x_(k+1) = (1/2) x_k + 1 / (sqrt k)
[My attempt: Assume the limit exists and equal to L
then L= (1/2) L + 0
=> (1/2) L = 0
=> L=0
Now I have to prove that the limit indeed exists, I want to use the monotone sequence theorem (monotone & bounded => convergence), but as I evaluate a few terms, I found that x1<x2, but x2>x3, which makes it not montone...what should I do?]
Definition: Let S be a subset of R^n. S is called open if it contains none of its boundary points. A point x E R^n is a boundary point of S if every ball centred at x contains both points in S and points in S^c (S complement)
Definition: A subset of R^n is called compact if it's both closed and bounded.
Definition: f is continuous at a iff
lim f(x) = f(a)
x->a
2) Suppose f: R^m->R^n is a map such that for any compact set K C R^n, the preimage set f^(<-)(K) = {x E R^m | f(x) E K} is compact. Is f necessary continuous? Justify.
3) Suppose f: R^n -> R^k has the following property: For any open set U C R^k, {x| f(x) E U} is an open set in R^n. Show that f is continuous on R^n.
For #2 and #3, I have absolutely no clue...feeling desperte...
Any help will be greatly appreciated!
lim x_k exsts and find its value if {x_k} is defined by
k->inf
x_1 = 1 and x_(k+1) = (1/2) x_k + 1 / (sqrt k)
[My attempt: Assume the limit exists and equal to L
then L= (1/2) L + 0
=> (1/2) L = 0
=> L=0
Now I have to prove that the limit indeed exists, I want to use the monotone sequence theorem (monotone & bounded => convergence), but as I evaluate a few terms, I found that x1<x2, but x2>x3, which makes it not montone...what should I do?]
Definition: Let S be a subset of R^n. S is called open if it contains none of its boundary points. A point x E R^n is a boundary point of S if every ball centred at x contains both points in S and points in S^c (S complement)
Definition: A subset of R^n is called compact if it's both closed and bounded.
Definition: f is continuous at a iff
lim f(x) = f(a)
x->a
2) Suppose f: R^m->R^n is a map such that for any compact set K C R^n, the preimage set f^(<-)(K) = {x E R^m | f(x) E K} is compact. Is f necessary continuous? Justify.
3) Suppose f: R^n -> R^k has the following property: For any open set U C R^k, {x| f(x) E U} is an open set in R^n. Show that f is continuous on R^n.
For #2 and #3, I have absolutely no clue...feeling desperte...
Any help will be greatly appreciated!

Last edited: