Series and parallel circuits

  • Engineering
  • Thread starter Jack John
  • Start date
  • #1
Jack John
2
0
if we have 2 circuits. series and parallel. both of them have 3 light bulbs connected to them. 1 ohm 2ohms 3ohms. both circuits have these light bulbs. will the 3ohm light brighter in both circuits?why or why not? I am thinking yes because the higher the resistance, the more collisions there will be so more electrical energy is converted into heat and light, but I am not sure, so willl the 3ohm light brighter in both circuits? why or why not .
 

Answers and Replies

  • #2
Krasner
2
0
No. The Three Ohm light bulb will be the brightest only if it is connected parallel to the other light bulbs. This is because the voltage drop on this light bulb will be equal to the voltage of the battery. However, in series the voltage drop on this light bulb will be smaller than the initial voltage. Thus in a series, the 3 ohm light bulb might actually be the dimmest one. A parallel circuit will guarantee it to be the brightest light bulb.
 
  • #3
nrqed
Science Advisor
Homework Helper
Gold Member
3,765
295
No. The Three Ohm light bulb will be the brightest only if it is connected parallel to the other light bulbs. This is because the voltage drop on this light bulb will be equal to the voltage of the battery. However, in series the voltage drop on this light bulb will be smaller than the initial voltage. Thus in a series, the 3 ohm light bulb might actually be the dimmest one. A parallel circuit will guarantee it to be the brightest light bulb.

It's actually the other way around.

In series the current is the same in all three so the best equation to use for the power is P = R I^2 which shows that the largest resistance will dissipate the most power.

In parallel they all have the same voltage so it's better to use P = V^2/R which shows that the largest resistance will dissipate the smallest power.
 
  • #4
rolerbe
104
3
Call the bulbs B1, B2 and B3.

In series, the total resistance is 6 ohms. So the current is V/6. The power in each bulb is the same: PB1,PB2,PB3 = 1/6 V^2, so they are equally bright. This is because each drops a different amount of voltage. VB1 = V/6, VB2 = V/3, VB3 = V/2.

In parallel, the voltage drop for each bulb is the same: V. The current is different. IB1 = V/1, IB2 = V/2, IB3 = V/3. So the power in each bulb is PB1 = V^2, PB2 = 1/2 V^2, PB3 = 1/3 V^2.

So, in series all the bulbs are the same brightness. In parallel, B3 is the dimmest of the 3. But its still brighter than in series.
 
  • #5
rolerbe
104
3
Corrected: Call the bulbs B1, B2 and B3.

In series, the total resistance is 6 ohms. So the current is V/6. CORRECTION: each bulb drops a different amount of voltage. VB1 = V/6, VB2 = V/3, VB3 = V/2. So, the power in each bulb is PB1 = 1/36*V^2, PB2 = 1/18*V^2, PB3 = 1/12*V^2.

In parallel, the voltage drop for each bulb is the same: V. The current is different. IB1 = V/1, IB2 = V/2, IB3 = V/3. So the power in each bulb is PB1 = V^2, PB2 = 1/2 V^2, PB3 = 1/3 V^2.

So, in series B3 is brightest. In parallel, B3 is the dimmest of the 3. But its still brighter than in series.
 
  • #6
saiedali2005
1
0
series the current is constant ,parallel he voltage is constant
 

Suggested for: Series and parallel circuits

  • Last Post
Replies
3
Views
377
Replies
3
Views
740
  • Last Post
Replies
8
Views
715
  • Last Post
Replies
9
Views
124
Engineering Resistors in Parallel
  • Last Post
Replies
2
Views
344
Replies
14
Views
1K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
17
Views
7K
Replies
3
Views
404
Top