azatkgz
- 182
- 0
Homework Statement
Determine whether the series converges or diverges.
\sum_{n=1}^{\infty}\left(e-\left(1+\frac{1}{n}\right)^n\right)^p where p is a parameter[/tex]
The Attempt at a Solution
\lim_{n\rightarrow\infty}e-\left(1+\frac{1}{n}\right)^n=0
so by using Root Test i decided that
\limsup_{n\rightarrow\infty}\sqrt[n]{\left(e-\left(1+\frac{1}{n}\right)^n\right)^p}<1
Which gives that series converges