VinnyCee
- 486
- 0
The problem (#11, 5.2, boyce diprima):
(3\,-\,x^2)\,y''\,-\,(3\,x)\,y'\,-\,y\,=\,0
I got the recursion formula as:
a_{n\,+\,2}\,=\,\frac{(n\,+\,1)}{3\,(n\,+\,2)}\,a_n
Which give the following results:
\begin{flalign*}<br /> a_2& = \frac{1}{6}\,a_n\,x^2&<br /> a_3& = \frac{2}{9}\,a_n\,x^3&<br /> a_4& = \frac{1}{4}\,a_n\,x^4&\\<br /> a_5& = \frac{4}{15}\,a_n\,x^5&<br /> a_6& = \frac{5}{18}\,a_n\,x^6&<br /> a_7& = \frac{6}{21}\,a_n\,x^7&<br /> \end{flalign*}
When these are used, the answer does not match the book:
y(x)\,=\,a_0\,\left[1\,+\,\frac{x^2}{6}\,+\,\frac{x^4}{24}\,+\,\frac{5}{432}\,x^6\,+\,...\right]\,+\,a_1\,\left[x\,+\,\frac{2}{9}\,x^3\,+\,\frac{8}{135}\,x^5\,+\,\frac{16}{945}\,x^7\,+\,...\right]
What did I do wrong?
(3\,-\,x^2)\,y''\,-\,(3\,x)\,y'\,-\,y\,=\,0
I got the recursion formula as:
a_{n\,+\,2}\,=\,\frac{(n\,+\,1)}{3\,(n\,+\,2)}\,a_n
Which give the following results:
\begin{flalign*}<br /> a_2& = \frac{1}{6}\,a_n\,x^2&<br /> a_3& = \frac{2}{9}\,a_n\,x^3&<br /> a_4& = \frac{1}{4}\,a_n\,x^4&\\<br /> a_5& = \frac{4}{15}\,a_n\,x^5&<br /> a_6& = \frac{5}{18}\,a_n\,x^6&<br /> a_7& = \frac{6}{21}\,a_n\,x^7&<br /> \end{flalign*}
When these are used, the answer does not match the book:
y(x)\,=\,a_0\,\left[1\,+\,\frac{x^2}{6}\,+\,\frac{x^4}{24}\,+\,\frac{5}{432}\,x^6\,+\,...\right]\,+\,a_1\,\left[x\,+\,\frac{2}{9}\,x^3\,+\,\frac{8}{135}\,x^5\,+\,\frac{16}{945}\,x^7\,+\,...\right]
What did I do wrong?