Blastrix91
- 25
- 0
Homework Statement
Problem description:
http://imageshack.us/a/img707/2060/beskrivelse.png
Homework Equations
http://imageshack.us/a/img543/5302/lign1.png
Z = Z_1 + Z_2 + ... +Z_n (Series),
\frac{1}{Z}= \frac{1}{Z_1} + \frac{1}{Z_2} + ... + \frac{1}{Z_n} (parallel)
The Attempt at a Solution
\frac{1}{Z}= (\frac{1}{i \omega C} + R)^{-1} + (i \omega L + R)^{-1}
\frac{1}{Z}= (\frac{R + i \omega C R}{i \omega C R})^{-1} + (i \omega L + R)^{-1}
\frac{1}{Z}= \frac{i \omega C R}{R + i \omega C R} + \frac{1}{i \omega L + R}
\frac{1}{Z}= \frac{i \omega C R (i \omega L + R)}{(R + i \omega C R)(i \omega L + R)} + \frac{R + i \omega C R}{(R + i \omega C R)(i \omega L + R)}
\frac{1}{Z}= \frac{i \omega C R (i \omega L + R) + R + i \omega C R}{(R + i \omega C R)(i \omega L + R)}
\frac{1}{Z}= \frac{i C L \omega^2 + C R \omega + L \omega - iR}{i C L \omega^2 + C R \omega + C \omega - i}
\frac{1}{Z}= \frac{i C L R \omega^2 + C R^2 \omega + L \omega R - iR^2}{i C L R \omega^2 + C R^2 \omega + C \omega R - i R}
R^2 = \frac{L}{C}
\frac{1}{Z}= \frac{i C L R \omega^2 + L \omega + L \omega R - i \frac{L}{C}}{i C L R \omega^2 + L \omega + C \omega R - i R}
.. and here I'm stuck. I need to eliminate those frequencies. (My approach may have been wrong all along?)
Last edited by a moderator: