courtrigrad
- 1,236
- 2
I want to evaluate \int \frac{\sin x}{x}.
So \sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}. Therefore \frac{\sin x}{x} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n+1)!}. So would that mean:
\int \frac{\sin x}{x} = C + \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1(2n+1)!} would be absolutely convergent (i.e. R = \infty)?
Thanks
So \sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}. Therefore \frac{\sin x}{x} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n+1)!}. So would that mean:
\int \frac{\sin x}{x} = C + \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1(2n+1)!} would be absolutely convergent (i.e. R = \infty)?
Thanks