Series Problem Help: Evaluating \int \frac{\sin x}{x} with Convergence Analysis

  • Thread starter Thread starter courtrigrad
  • Start date Start date
  • Tags Tags
    Series
courtrigrad
Messages
1,236
Reaction score
2
I want to evaluate \int \frac{\sin x}{x}.

So \sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}. Therefore \frac{\sin x}{x} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n+1)!}. So would that mean:

\int \frac{\sin x}{x} = C + \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1(2n+1)!} would be absolutely convergent (i.e. R = \infty)?

Thanks
 
Physics news on Phys.org
How do you know that series is absolutely convergent?
 
I would use the ratio test |\frac{ a_{n+1}}{a_{n}}|. If the limit as n\rightarrow \infty is less than 1, then the series is absolutely convergent. Ok so I guess it is then.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top