Quick Q: Understanding (k+1)^2 in Series Calculations

  • Thread starter Thread starter phospho
  • Start date Start date
  • Tags Tags
    Series
AI Thread Summary
The discussion centers on the expression (k+1)^2 in series calculations, with a participant questioning its validity. They argue that the terms should instead reflect (2k+1)^2 based on their backward summation from 2k+2. The confusion arises regarding the third to last term, which is presented as k^2, while they believe it should be 4k^2. The participant expresses a willingness to reconsider their reasoning if presented with a valid counterargument. The conversation highlights the complexities of series calculations and the need for clarity in mathematical expressions.
phospho
Messages
250
Reaction score
0
ooojN.png


Should the highlighted part not be (k+1)^2, could anyone explain?>
 
Physics news on Phys.org
Well, it makes sense to me that it would be (2k+1)^2. Since you're summing up to 2k+2, going backwards from the final term you would have (2k+2)^2 then (2k+2 - 1)^2 then (2k+2 - 2)^2, etc. which would make the second to last term (2k+1)^2 and not (k+1)^2. What doesn't make sense to me is that it shows the third to last term as k^2. Using the same method I just described, which I don't see a problem with, you get that the third to last term should be (2k+2 - 2)^2 = (2k)^2 = 4k^2. So, either there's a mistake or I'm missing something. If my reasoning is correct, though, it explains why it's (2k+1)^2
 
elvishatcher said:
Well, it makes sense to me that it would be (2k+1)^2. Since you're summing up to 2k+2, going backwards from the final term you would have (2k+2)^2 then (2k+2 - 1)^2 then (2k+2 - 2)^2, etc. which would make the second to last term (2k+1)^2 and not (k+1)^2. What doesn't make sense to me is that it shows the third to last term as k^2. Using the same method I just described, which I don't see a problem with, you get that the third to last term should be (2k+2 - 2)^2 = (2k)^2 = 4k^2. So, either there's a mistake or I'm missing something. If my reasoning is correct, though, it explains why it's (2k+1)^2

That makes sense, thanks.
 
Glad I could help - if you ever figure out some reason why I'm wrong and it should be k^2 not 4k^2, let me know
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top