MHB Set of 2015 Consecutive Positive Ints with 15 Primes

Click For Summary
The discussion centers on whether there exists a set of 2015 consecutive positive integers containing exactly 15 prime numbers. It is established that as the starting integer n increases from 1 to 2016! + 2, the number of primes in the set, denoted as f(S_n), changes by at most 1 at each step. Starting from f(S_1) = 305 and ending at f(S_n) = 0, the intermediate value theorem suggests that f(S_n) must equal 15 at some point. The calculations demonstrate that the transition from a high to a low number of primes occurs smoothly, confirming the existence of such a set. The conclusion affirms the mathematical validity of the claim.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Is there a set of $2015$ consecutive positive integers containing exactly $15$ prime numbers?
 
Mathematics news on Phys.org
lfdahl said:
Is there a set of $2015$ consecutive positive integers containing exactly $15$ prime numbers?
[sp]For each natural number $n$ let $S_n$ be the set of $2015$ consecutive positive integers starting at $n$, and let $f(S_n)$ be the number of primes in that set.

To get from $S_n$ to $S_{n+1}$, you have to remove $n$ from $S_n$, and add $n+2015$ to the set. If either both or neither of those two numbers are prime then $f(S_{n+1}) = f(S_n)$. If one of them is prime and the other is not then $f(S_{n+1})$ and $f(S_n)$ will differ by $1$.

When $n=1$, $S_1$ is greater than $15$ (in fact, I think that $S_1 = 305$). When $n = 2016! + 2$, $S_n = 0$, because $2016! + k$ is divisible by $k$ whenever $2\leqslant k \leqslant 2016$.

So as $n$ increases from $1$ to $2016! + 2$, $f(S_n)$ changes by at most $1$ at each step, and has to go from $305$ to $0$. By a sort of integer-valued "intermediate value theorem", it must take the value $15$ at some point.[/sp]
 
Opalg said:
[sp]For each natural number $n$ let $S_n$ be the set of $2015$ consecutive positive integers starting at $n$, and let $f(S_n)$ be the number of primes in that set.

To get from $S_n$ to $S_{n+1}$, you have to remove $n$ from $S_n$, and add $n+2015$ to the set. If either both or neither of those two numbers are prime then $f(S_{n+1}) = f(S_n)$. If one of them is prime and the other is not then $f(S_{n+1})$ and $f(S_n)$ will differ by $1$.

When $n=1$, $S_1$ is greater than $15$ (in fact, I think that $S_1 = 305$). When $n = 2016! + 2$, $S_n = 0$, because $2016! + k$ is divisible by $k$ whenever $2\leqslant k \leqslant 2016$.

So as $n$ increases from $1$ to $2016! + 2$, $f(S_n)$ changes by at most $1$ at each step, and has to go from $305$ to $0$. By a sort of integer-valued "intermediate value theorem", it must take the value $15$ at some point.[/sp]

Thankyou so much, Opalg, for your excellent solution and participation!
 
lfdahl said:
Thankyou so much, Opalg, for your excellent solution and participation!

Yes, we can always count on Chris (Opalg) to post a robust, lucid solution. (Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 58 ·
2
Replies
58
Views
9K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 23 ·
Replies
23
Views
4K