Set of 2015 Consecutive Positive Ints with 15 Primes

Click For Summary
SUMMARY

The discussion confirms that there exists a set of 2015 consecutive positive integers containing exactly 15 prime numbers. By defining the set \( S_n \) as the 2015 integers starting from \( n \) and the function \( f(S_n) \) as the count of primes in that set, it is established that as \( n \) progresses from 1 to \( 2016! + 2 \), \( f(S_n) \) transitions from 305 to 0. This guarantees that \( f(S_n) \) must equal 15 at some point due to the nature of prime distribution and the intermediate value theorem.

PREREQUISITES
  • Understanding of prime numbers and their distribution
  • Familiarity with the concept of consecutive integers
  • Basic knowledge of mathematical functions and sequences
  • Awareness of the intermediate value theorem in mathematics
NEXT STEPS
  • Explore the distribution of prime numbers within large sets of integers
  • Investigate the properties of factorial numbers, specifically \( 2016! \)
  • Study the implications of the intermediate value theorem in number theory
  • Learn about algorithms for counting primes in a given range of integers
USEFUL FOR

Mathematicians, number theorists, and students interested in prime number distribution and properties of consecutive integers.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Is there a set of $2015$ consecutive positive integers containing exactly $15$ prime numbers?
 
Mathematics news on Phys.org
lfdahl said:
Is there a set of $2015$ consecutive positive integers containing exactly $15$ prime numbers?
[sp]For each natural number $n$ let $S_n$ be the set of $2015$ consecutive positive integers starting at $n$, and let $f(S_n)$ be the number of primes in that set.

To get from $S_n$ to $S_{n+1}$, you have to remove $n$ from $S_n$, and add $n+2015$ to the set. If either both or neither of those two numbers are prime then $f(S_{n+1}) = f(S_n)$. If one of them is prime and the other is not then $f(S_{n+1})$ and $f(S_n)$ will differ by $1$.

When $n=1$, $S_1$ is greater than $15$ (in fact, I think that $S_1 = 305$). When $n = 2016! + 2$, $S_n = 0$, because $2016! + k$ is divisible by $k$ whenever $2\leqslant k \leqslant 2016$.

So as $n$ increases from $1$ to $2016! + 2$, $f(S_n)$ changes by at most $1$ at each step, and has to go from $305$ to $0$. By a sort of integer-valued "intermediate value theorem", it must take the value $15$ at some point.[/sp]
 
Opalg said:
[sp]For each natural number $n$ let $S_n$ be the set of $2015$ consecutive positive integers starting at $n$, and let $f(S_n)$ be the number of primes in that set.

To get from $S_n$ to $S_{n+1}$, you have to remove $n$ from $S_n$, and add $n+2015$ to the set. If either both or neither of those two numbers are prime then $f(S_{n+1}) = f(S_n)$. If one of them is prime and the other is not then $f(S_{n+1})$ and $f(S_n)$ will differ by $1$.

When $n=1$, $S_1$ is greater than $15$ (in fact, I think that $S_1 = 305$). When $n = 2016! + 2$, $S_n = 0$, because $2016! + k$ is divisible by $k$ whenever $2\leqslant k \leqslant 2016$.

So as $n$ increases from $1$ to $2016! + 2$, $f(S_n)$ changes by at most $1$ at each step, and has to go from $305$ to $0$. By a sort of integer-valued "intermediate value theorem", it must take the value $15$ at some point.[/sp]

Thankyou so much, Opalg, for your excellent solution and participation!
 
lfdahl said:
Thankyou so much, Opalg, for your excellent solution and participation!

Yes, we can always count on Chris (Opalg) to post a robust, lucid solution. (Yes)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 58 ·
2
Replies
58
Views
9K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 23 ·
Replies
23
Views
4K