Shape Operator for Schwarzschild spacetime in 2-dim

honeytrap
Messages
8
Reaction score
0
Hello:

I would like to understand how to compute the shape operator (and eigenvalues etc) for a complex example like the Schwarzschild spacetime. It's easy for a submanifold in Euclidean space, but I don't know how to do it for the more advanced examples like the schwarzschild spacetime in 2-dim.

QUESTION:

Given the Schwarzschild metric in Eddington-Finkelstein coordinates in 2-
dim:
ds^2 = -(1 - 2M/r)dv^2 + 2dvdr , which is a surface.

How can I compute the Schwarzschild
a) Shape operator (Weingarten map or second fundamental tensor)
b) unit normal vectorfield
c) Eigenvalues of the Shape operator matrix?

I know all the definitons etc., but the 2-dim Schwarzschild is not the typical
surface/ submanifold embedded in Euclidean space.
Could someone show me how to compute the steps a)-c) so that I understand it for this
example (and can apply it to other examples/metrics)?
 
Last edited:
Physics news on Phys.org
Seriously, you want to describe the curvature of a 2-dimensional submanifold in a 4-dimensional one? In general that's going to be quite complicated -- a blend of the Gauss-Codazzi equations with the Serret-Frenet ones for a curve. Not simply a second fundamental form.

But anyway for the case you're describing, the (u,v) manifold in Schwarzschild spacetime, isn't the exterior curvature identically zero, by reflection symmetry? The normals to the surface would lie in the 2-sphere (θ, φ), and there would be no reason for the surface to be curved preferentially in any of those directions. I say, exteriorly speaking, it's flat.
 
Thanks for your answer!
I am actually interested in the 2-dimensional (u,v)- "Schwarzschild" manifold (surface) defined by the metric above.
From the shape operator (e.g. the eigenvalues = principal curvatures) you can derive the Gaussian curvature and the mean curvature. I computed the Ricci tensor and then the Gaussian curvature for the mentioned 2-dim manifold and both of them are not zero. Thus the eigenvalues (principal curvatures) of the shape operator matrix cannot be zero either. (Contradiction to flatness?)

I am interested in the eigenvalues and eigenvectors, but don't know how to compute them. I obviously need first the shape operator matrix.
Any help is appreciated!
 
If the shape operator includes the mean curvature, than there's no way you can compute it purely intrinsically! It depends upon the embedding.

Yes, having just looked up the definition of the shape operator, it certainly depends on the embedding. Intrinsically-defined surfaces don't have normal vectors at all.
 
Ben Niehoff said:
If the shape operator includes the mean curvature, than there's no way you can compute it purely intrinsically! It depends upon the embedding.

Yes, having just looked up the definition of the shape operator, it certainly depends on the embedding. Intrinsically-defined surfaces don't have normal vectors at all.


This means then that it doesn't make sense to calculate the shape operator at all?
Or is there a canonical embedding that could be picked (e.g. 3-dim Euclidean/ Minkowski space)?
The computation would depend on the embedding and thus the result would not deliver any general information that could be useful for a discussion?
 
I assumed that since it was a subspace of Schwarzschild, you were embedding it in Schwarzschild! In which case my remark about the reflection symmetry applies.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top