Shape Operator for Schwarzschild spacetime in 2-dim

Click For Summary
SUMMARY

The discussion focuses on computing the shape operator for the 2-dimensional Schwarzschild spacetime defined by the metric ds² = -(1 - 2M/r)dv² + 2dvdr in Eddington-Finkelstein coordinates. Key points include the necessity of understanding the shape operator (Weingarten map), unit normal vector field, and eigenvalues of the shape operator matrix. The participants emphasize that the shape operator's computation is influenced by the embedding, and intrinsic surfaces lack normal vectors, complicating the analysis. The Ricci tensor and Gaussian curvature for the 2-dimensional manifold are computed, revealing non-zero values that contradict the assumption of flatness.

PREREQUISITES
  • Understanding of the Schwarzschild metric in general relativity
  • Familiarity with shape operators and the Weingarten map
  • Knowledge of Gaussian curvature and mean curvature
  • Basic concepts of embedding in differential geometry
NEXT STEPS
  • Study the Gauss-Codazzi equations for curvature analysis
  • Learn about the Serret-Frenet formulas for curves in differential geometry
  • Explore canonical embeddings in 3-dimensional Euclidean and Minkowski spaces
  • Investigate the relationship between intrinsic and extrinsic curvature
USEFUL FOR

Mathematicians, physicists, and students in differential geometry or general relativity who are interested in the geometric properties of manifolds and their curvature in the context of Schwarzschild spacetime.

honeytrap
Messages
8
Reaction score
0
Hello:

I would like to understand how to compute the shape operator (and eigenvalues etc) for a complex example like the Schwarzschild spacetime. It's easy for a submanifold in Euclidean space, but I don't know how to do it for the more advanced examples like the schwarzschild spacetime in 2-dim.

QUESTION:

Given the Schwarzschild metric in Eddington-Finkelstein coordinates in 2-
dim:
ds^2 = -(1 - 2M/r)dv^2 + 2dvdr , which is a surface.

How can I compute the Schwarzschild
a) Shape operator (Weingarten map or second fundamental tensor)
b) unit normal vectorfield
c) Eigenvalues of the Shape operator matrix?

I know all the definitons etc., but the 2-dim Schwarzschild is not the typical
surface/ submanifold embedded in Euclidean space.
Could someone show me how to compute the steps a)-c) so that I understand it for this
example (and can apply it to other examples/metrics)?
 
Last edited:
Physics news on Phys.org
Seriously, you want to describe the curvature of a 2-dimensional submanifold in a 4-dimensional one? In general that's going to be quite complicated -- a blend of the Gauss-Codazzi equations with the Serret-Frenet ones for a curve. Not simply a second fundamental form.

But anyway for the case you're describing, the (u,v) manifold in Schwarzschild spacetime, isn't the exterior curvature identically zero, by reflection symmetry? The normals to the surface would lie in the 2-sphere (θ, φ), and there would be no reason for the surface to be curved preferentially in any of those directions. I say, exteriorly speaking, it's flat.
 
Thanks for your answer!
I am actually interested in the 2-dimensional (u,v)- "Schwarzschild" manifold (surface) defined by the metric above.
From the shape operator (e.g. the eigenvalues = principal curvatures) you can derive the Gaussian curvature and the mean curvature. I computed the Ricci tensor and then the Gaussian curvature for the mentioned 2-dim manifold and both of them are not zero. Thus the eigenvalues (principal curvatures) of the shape operator matrix cannot be zero either. (Contradiction to flatness?)

I am interested in the eigenvalues and eigenvectors, but don't know how to compute them. I obviously need first the shape operator matrix.
Any help is appreciated!
 
If the shape operator includes the mean curvature, than there's no way you can compute it purely intrinsically! It depends upon the embedding.

Yes, having just looked up the definition of the shape operator, it certainly depends on the embedding. Intrinsically-defined surfaces don't have normal vectors at all.
 
Ben Niehoff said:
If the shape operator includes the mean curvature, than there's no way you can compute it purely intrinsically! It depends upon the embedding.

Yes, having just looked up the definition of the shape operator, it certainly depends on the embedding. Intrinsically-defined surfaces don't have normal vectors at all.


This means then that it doesn't make sense to calculate the shape operator at all?
Or is there a canonical embedding that could be picked (e.g. 3-dim Euclidean/ Minkowski space)?
The computation would depend on the embedding and thus the result would not deliver any general information that could be useful for a discussion?
 
I assumed that since it was a subspace of Schwarzschild, you were embedding it in Schwarzschild! In which case my remark about the reflection symmetry applies.
 

Similar threads

Replies
11
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
58
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K