Hakkinen
- 42
- 0
Homework Statement
For the SHO, find these commutators to their simplest form:
[a_{-}, a_{-}a_{+}]
<br /> [a_{+},a_{-}a_{+}]<br />
<br /> [x,H]<br />
<br /> [p,H]<br />
Homework Equations
The Attempt at a Solution
I though this would be an easy problem but I am stuck on the first two parts. Here's what I did at first:
<br /> [a_{-}, a_{-}a_{+}]\psi = a_{-}(n+1)\psi_{n} - a_{-}n\psi_{n} = a_{-}\psi_{n}<br />
<br /> = \sqrt{n}\psi_{n-1}<br />
<br /> [a_{+}, a_{-}a_{+}]\psi = a_{+}(n+1)\psi_{n} - a_{-}a_{+}\sqrt{n+1}\psi_{n+1}<br />
<br /> = (n+1)^{3/2}\psi_{n+1} - (n+1)^{3/2}\psi_{n+1} = 0<br />Now what I am confused about is the \psi_{n-1} term in the first commutator. Surely there is a general form of the commutator without the test wavefunction? And I can't just drop this term and have root of n as the result. So did I do something wrong?
I tried the first part again using the explicit form of the ladder operators, in terms of H, p, x, with all of the constants. What I have gotten so far looks quite messy and involves [p,H] and [x,H], which I've yet to compute and are the last two parts of the problem... So it seems this route is not the easiest?
Any assistance is appreciated!
Last edited: