Are My Calculations for Proper Time on a Rocket in General Relativity Correct?

  • Thread starter Thread starter Passionflower
  • Start date Start date
  • Tags Tags
    Rocket
Passionflower
Messages
1,543
Reaction score
0
Assume we are on a non rotating planet and shoot a rocket straight with a given velocity (smaller than the escape velocity) and we want to calculate using the Schwarzschild solution the coordinate and proper time, both for an observer on the planet and rocket, between lift off and return to the planet.

Let's take a very basic (but of course unrealistic) example:

The Schwarzschild radius rs = 1
The surface of the planet rp = 2
The velocity of the rocket v = 0.5

Here are my results:
For the apogee of the rocket I calculate: r=3
For the coordinate time I calculate: 14.90142209
For the proper time of a clock on the planet surface I calculate: 10.53689661
For the proper time of a clock on the rocket I calculate: 11.29502440

The question in this topic is about the approach used in:
"General Relativity and the Einstein Equations"
Choquet-Bruhat - Oxford, 2009

In chapter 9, page 87 we have:

http://img42.imageshack.us/img42/9963/formulae.png

She uses the energy to calculate the proper time of a clock on the rocket. But I do not seem to get it to work.

If I calculate the Energy for the rocket for an observer at infinity I get: 0.8164965809

Since the rocket is free falling this energy must be a constant in the integral.

When solving this integral for the proper time on the rocket with this energy I get 9.125220141 which is less than what I calculate for the proper time on a clock on the surface of the planet.

Where do I go wrong or misunderstand?
 
Last edited by a moderator:
Physics news on Phys.org
We can calculate the proper time for the rocket using:
\Large \int _{{\it r_i}}^{{\it r_o}}\!{\frac {1}{\sqrt {{\frac {{\it r_s}}{r}}-{<br /> \frac {{\it r_s}}{{\it r_0}}}}}}{dr}
We can also express it in terms of energy and then we do not need the apogee at all:
\Large \int _{{\it r_i}}^{{\it r_o}}{\frac {1}{\sqrt {{E}^{2}-1+{\frac {{\it r_s}}{r}}}}}{dr}
(rs is the Schwarzschild radius and r0 is the apogee of the rocket and ri and ro are the r-coordinate ranges)

After multiplying by two both give a result of 11.29502440
 
The formula in Choquet-Bruhat's book uses this principle:
\Large {\frac {dt}{d\tau}}=E \left( 1-{\frac {{\it r_s}}{r}} \right) ^{-1}<br />
Which is correct as it is widely referenced in the literature.

But somehow it does not add up.
 
Passionflower said:
We can also express it in terms of energy and then we do not need the apogee at all:
\Large \int _{{\it r_i}}^{{\it r_o}}{\frac {1}{\sqrt {{E}^{2}-1+{\frac {{\it r_s}}{r}}}}}{dr}
And coordinate time can also be expressed in terms of energy:
\Large \int _{{\it ri}}^{{\it ro}}E \left( 1-{\frac {{\it rs}}{r}} \right) ^{-1}{\frac {1}{\sqrt {{E}^{2}-1+{\frac {{\it rs}}{r}}}}}{dr}
 
No comments to my question?
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top