Should You Adjust Your Thermostat When Leaving Home for Short Periods?

  • Thread starter Thread starter sharonita
  • Start date Start date
  • Tags Tags
    Heat Heat transfer
AI Thread Summary
When leaving home for a short period, such as half an hour, it is generally more energy-efficient to leave the thermostat at the same temperature rather than adjusting it. Lowering the thermostat may lead to increased energy use when reheating the space upon return. Some discussions suggest that maintaining a consistent temperature can save fuel and energy. Additionally, closing blinds can help retain heat in the home. Overall, keeping the thermostat steady is often recommended for short absences.
sharonita
Messages
13
Reaction score
0
My question is as follows:
If you wsh to save fuel on a cold day. and you're going to leave your house for a half hour or so, should you turn the thermostat down a few degrees, down all the way, or leave it at room temperature.

I said that I would leave it at the same temperature since I'm only leaving for a half hour or so, so by the time I come back the temperature would not have changed much. I should not lower it or higher it because it would be less fuel-efficient and take more energy from the heater to reach the new temperature level.

Any suggestions?
Thanks much, Sharon.
 
Physics news on Phys.org
Ive heard on the news that you should keep it on, that it actually takes less energy that having to reheat your house. Also close your blinds.

sorry I am not much help, its all i know...
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top