Show Isomorphism of ZxZ/<(a,b)> to Z if gcd(a,b)=1

  • Thread starter Thread starter y2kevin
  • Start date Start date
  • Tags Tags
    Group
y2kevin
Messages
6
Reaction score
0

Homework Statement


Show that ZxZ/<(a,b)> is isomorphic to Z if gcd(a,b)=1.


The Attempt at a Solution



I thought I had an idea but apparently I don't.

I reasoned this geometrically. For ZxZ/<(1,a)> (for all a in Z) can be graphed as a line hitting points (k,a*k) in the x-y plane. If we shift the line covered by <(1,a)> along the y-axis (e.g. use cosets (0,y)+<(1,a)>, where y is an integer), we can hit all points in ZxZ. Hence, ZxZ/<(1,a)> is isomorphic to Z.

But for ZxZ/<(2,3)>, the story changes, we skip all the (1,y) values if we shift by (0,y)+<(2,3)>. Hence, this leads me to conclude that we also need to include the possible cosets of (1,y)+<(2,a)>, making ZxZ/<(2,3)> isomorphic to Z2xZ. But apparently this is wrong.

Can anyone shed a light on this? Thank you.
 
Physics news on Phys.org
any ideas?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top