Show that complex conjugate is also a root of polynomial with real coefficients

Muffins
Messages
5
Reaction score
0

Homework Statement


Suppose that f(x) is a polynomial of degree n with real coefficients; that is,

f(x)=a_n x^n+ a_(n-1) x^(n-1)+ …+a_1 x+ a_0, a_n,… ,a_0∈ R(real)

Suppose that c ∈ C(complex) is a root of f(x). Prove that c conjugate is also a root of f(x)

Homework Equations



(a+bi)*(a-bi) = a^2 + b^2 where a, and b are always reals?
Not really sure if this helps or not.

The Attempt at a Solution



I'm really clueless on how to start approaching this. I was thinking perhaps the fundamental theorem of algebra might be of some use, or perhaps the fact that a number of complex form multiplied by it's conjugate is a real number, but I'm really not sure.

Could anyone give me a nudge in the right direction?
Any help would be greatly appreciated! Thanks!
 
Physics news on Phys.org
The root is where f(c)=0. Take the complex conjugate of that equation.
 
Never mind! I found the actual theorem on the web, and I think this is pretty much what I was looking for anyway

Consider the polynomial
f(x)=a_n x^n+ a_(n-1) x^(n-1)+ …+a_1 x+ a_0, a_n,… ,a_0∈ R(real)
where all a*x are real. The equation f(x) = 0 is thus
a_n x^n+ a_(n-1) x^(n-1)+ …+a_1 x+ a_0, a_n = 0
Given that all of the coefficients are real, we have
a_n x^n(conjugate) = a_n x^n(x is conjugate)
Thus it follows that
a_n x^n(conj)+ a_(n-1) x^(n-1)(conj)+ …+a_1 x(conj)+ a_0, a_n = 0(conj) = 0
and thus that for any root ζ its complex conjugate is also a root.
 
Hahah, thanks Dick! I caught on a little late, but thanks a bunch for your reply!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top