Show that g is a continious function

  • Thread starter Thread starter ares25
  • Start date Start date
  • Tags Tags
    Function
ares25
Messages
5
Reaction score
0
Let f1,...,fN be continuous functions on interval [a,b]. Let g:[a,b] -> R be the function give by
g(x) = max{ f1(x),..., fN(x)}.


show that g is a continuous function.


I have let t ε [a,b]
NTS g(x) is continuous at t
if a≤t< b, then there exists a neighborhood Vt of t contained in [a,t), such that g(x) = f1(x) for any x ε Vt.
Note that f1(x) is continuous on [a,b]. we obtain f1 is continuous on t. → g(x) is is continuous at t.
likewise, if a<t≤b, then there exists a neighborhood Vt of t contained in (t,b], such that g(x) = fN(x) for any x ε Vt.
Note that fN is continuous on [a,b]. fN is continuous on t. g(x) is continuous at t.

by g(x) = f1(x) True, then g(x) = fi+1(x) is also true for all i ε N.

IS this getting close or in the right ballpark? because i also have another more general one.
 
Physics news on Phys.org
ares25 said:
Let f1,...,fN be continuous functions on interval [a,b]. Let g:[a,b] -> R be the function give by
g(x) = max{ f1(x),..., fN(x)}.


show that g is a continuous function.


I have let t ε [a,b]
NTS g(x) is continuous at t
if a≤t< b, then there exists a neighborhood Vt of t contained in [a,t), such that g(x) = f1(x) for any x ε Vt.
How do you figure that? What is special about ##f_1## that would ensure that it is the smallest of the ##f_n##'s on this interval, or on any interval?

Here is a hint which may help. Note that for ##N > 1##, we have ##\max\{f_1(x), f_2(x), \ldots, f_N(x)\} = \max\{\max\{f_1(x), f_2(x), \ldots f_{N-1}(x)\}, f_N(x)\}##. So this suggests that an inductive proof could work.

Another hint: ##\max\{a, b\} = (a + b + |a-b|) / 2##.
 
On my other proof https://www.physicsforums.com/showthread.php?t=753405 I made it more general for the whole, but i believe its too general. I used that idea of max for whole but want to switch it to inductive. where the max of f,g is also continuous, then the max of any two are also continuous, and therefore we can show it for any fn+1. if you could take a look at that proof, it be great help. I'm still breaking it down but thanks for the advice.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top