MHB Show that the intersection is a pp -Sylow subgroup

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to show that if $S\in \text{Syl}_p(G)$ and $N\trianglelefteq G$, then $N\cap S\in \text{Syl}_p(N)$. Could you give me some hints how we could show that? (Wondering)

Do we maybe use Frattini's Argument? (Wondering)
From that we have that since $N\trianglelefteq G$ and $S\in \text{Syl}_p(G)$, $G=NN_G(P)=N_G(P)N$, right? (Wondering)
But does this help us? (Wondering)
 
Physics news on Phys.org
I have done the following:

Since $S\in \text{Syl}_p(G)$, i.e., $S\leq G$, and $N\trianglelefteq G$ we have that $NS\leq G$.

We have that $|NS|=\frac{|N||S|}{|N\cap S|}\Rightarrow \frac{|NS|}{|S|}=\frac{|N|}{|N\cap S|}\Rightarrow [NS:S]=[N:N\cap S]$

Since $S\in \text{Syl}_p(G)$ we have that $[G:S]$ is coprime with $p$.
We have that $[G:S]=[G:NS][NS:S]$.
Since $[NS:S]\mid [G:S]$, $[N:N\cap S]=[NS:S]$ is coprime with $p$.
Since $N\cap S\leq S$, from Lagrange's theorem we have that $|N\cap S|\mid |S|$.
Since $S\in \text{Syl}_p(G)$, if $|G|=p^na$, with $p\not\mid a$, then $|S|=p^n$.
Then $|N\cap S|=p^m$, with $0<m\leq n$.
Since $|N\cap S|=p^m$ and $[N:N\cap S]$ is coprime with $p$, we have that $N\cap P\in \text{Syl}_p(N)$.

Is everything correct? (Wondering)
 
mathmari said:
I have done the following:

Since $S\in \text{Syl}_p(G)$, i.e., $S\leq G$, and $N\trianglelefteq G$ we have that $NS\leq G$.

We have that $|NS|=\frac{|N||S|}{|N\cap S|}\Rightarrow \frac{|NS|}{|S|}=\frac{|N|}{|N\cap S|}\Rightarrow [NS:S]=[N:N\cap S]$

Since $S\in \text{Syl}_p(G)$ we have that $[G:S]$ is coprime with $p$.
We have that $[G:S]=[G:NS][NS:S]$.
Since $[NS:S]\mid [G:S]$, $[N:N\cap S]=[NS:S]$ is coprime with $p$.
Since $N\cap S\leq S$, from Lagrange's theorem we have that $|N\cap S|\mid |S|$.
Since $S\in \text{Syl}_p(G)$, if $|G|=p^na$, with $p\not\mid a$, then $|S|=p^n$.
Then $|N\cap S|=p^m$, with $0<m\leq n$.
Since $|N\cap S|=p^m$ and $[N:N\cap S]$ is coprime with $p$, we have that $N\cap P\in \text{Syl}_p(N)$.

Is everything correct? (Wondering)

It looks like it to me.
 
Deveno said:
It looks like it to me.

Ah ok... Thank you! (Smile)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K